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Abstract 
 

Brain oscillations are dynamic entities, rapidly varying in time and frequency that are 

extensively recorded in the mammalian brain. The aim of this thesis is to investigate the 

role of cortical rhythms in human auditory cortex during speech perception, both with 

computational and experimental methods. The first part of the doctoral work consisted 

in developing a neural microcircuit model of nested oscillations for early auditory 

processing, involving a fast Gamma rhythm (30-100 Hz) coupled to a slow Theta rhythm 

(3-8 Hz). The model is capable of parsing speech into its constituents (i.e. syllables) and 

extracting the syllabic information for latter categorization. In fact, Theta oscillations 

flexibly track the quasi-periodic syllabic content of speech, and temporally arrange 

Gamma spikes so that phonemic information can be efficiently encoded. We further 

employed a set of advanced tools from dynamical system theory in order to uncover the 

mathematical description of the neural circuit we have implemented in the simulations. 

The second part of this dissertation relates to the transmission of information across the 

auditory hierarchy in the brain, using two segregated frequency channels. We analysed 

EEG signals from intracranial recordings in humans using cross-frequency coupling and 

Granger causality. We found that Bottom-up information is dominated by Gamma 

oscillations, while Top-Down flow is conveyed through Theta oscillations. We have also 

shown that both flows fluctuate over time at a rate of about ~ 1-3 Hz, which suggests 

that sensory information is conveyed using distinct frequencies and via discrete time 

windows. 
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Résumé 

 
Les oscillations cérébrales sont des entités dynamiques, rapidement variables 

dans le temps et la fréquence, qui sont enregistrées largement dans le cerveau des 

mammifères. L'objectif de cette thèse est d'étudier le rôle des rythmes corticaux dans le 

cortex auditif humain lors de la perception de la parole, à la fois avec les méthodes 

computationelles et expérimentales. La première partie de la thèse de doctorat a consisté 

en l'élaboration d'un modèle de microcircuit de neurones d'oscillations mêlées pour les 

premiers stades du traitement auditif, composé d’un rythme rapide Gamma (30-100 Hz) 

couplé à un rythme lent Theta (3-8 Hz). Le modèle est capable de décomposer la forme 

d'onde vocale en ses constituants (i.e. syllabes), et extraire les informations syllabiques 

pour les catégoriser. En fait, les oscillations Theta suivent le contenu syllabique quasi-

périodique de la parole de manière flexible, et organisent temporellement les spikes 

Gamma afin que l'information phonémique puisse être efficacement codé. Nous avons 

également utilisé un ensemble d'outils avancés à partir de la théorie des systèmes 

dynamiques, afin de découvrir la description mathématique du circuit neuronal que 

nous avons mis en place dans les simulations. La deuxième partie de cette thèse 

concerne la transmission d'informations à travers la hiérarchie auditif du cerveau, en 

utilisant deux canaux de fréquences distincts. Nous avons analysé les signaux EEG à 

partir d'enregistrements intracrâniens chez les humains, en utilisant le couplage entre 

fréquences et la causalité de Granger. Nous avons découvert que l'information Bottom-

up est dominé par des oscillations Gamma, tandis que les flux Top-Down est transporté 

à travers des oscillations Theta. Nous avons également montré que les suppléants de 

l'inférence causale dans le temps entre les deux flux, à un taux de ~ 1-3 Hz, ce qui 

suggère que la transmission de l'information procède par des fenêtres de temps discrets 

à des fréquences distinctes. Nous avons également montré que les deux flux fluctuent 

dans le temps à un taux d'environ ~ 1-3 Hz, ce qui suggère que l'information sensorielle 

est transmise en utilisant des fréquences distinctes et à travers des fenêtres de temps 

discrets. 
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1 Introduction overview 
 

Temporal dynamics is often both a blessing and curse for physicists. Whether it 
concerns the evolution of the wave function of some subatomic particle, the motion of a 
comet crossing our solar system or the rate of growth of a population in biology, it is 
hardly easy to deal with the flow of time in equations. This dissertation has a lot to do 
with time and synchronization, and how these two aspects might be important for the 
brain and, in particular, for the understanding of speech.  

In the first Chapter of this dissertation we will go over almost a century of research 
into brain rhythms, the synchronized waves of activity that are ubiquitously observed in 
brain recordings. Although their presence has been linked to an astounding amount of 
cognitive functions and mechanisms, their role remains unclear and many 
neuroscientists still believe that they are an epiphenomenon. In this regard, 
computational and analytical models can be extremely useful in tying down 
experimental results to precise predictions and verify the consistency of a hypothesis. 
Theoretical analyses do not only help the understanding of observed phenomena, but 
also, most importantly, can highlight the actual advantages for the brain to use a 
particular organization strategy, such as the use of brain rhythms, to perform its tasks. 
In particular, simple models are often the most appealing because, as easy to 
understand, they can be easily manipulated and understood. To introduce our 
theoretical work on coupled oscillations (Fontolan et al., 2013), we present the most 
relevant mathematical models of neuronal oscillation in Chapter 2, starting with a 
tutorial on the basic models of single neurons and finishing with the  state-of-the-art 
models of coupled oscillations in the brain. In Chapter 3 we will see how the processing 
of speech in auditory cortex is a privileged system to investigate the potential active role 
of oscillations, given the remarkable matching between timescales in speech and in 
cortical rhythms recorded locally. We will review the experimental evidence that 
motivated our computational work on speech parsing by means of Theta (3-8 Hz) and 
Gamma (30-100 Hz) frequency oscillations (Hyafil et al., 2015). Finally, in Chapter 4, we 
will see how the role of oscillations is not limited to the decoding of sensory stimuli, 
such as speech waveforms, but appears to be linked to a more global organizational 
principle of the brain, i.e. the transmission of information from one brain area to 
another. We found, by analyzing data recorded intracranially in humans, that two 
distinct frequency channels are employed by the brain: Gamma band for stimulus-
driven, bottom-up communication, and Beta (13-30 Hz) band for anticipatory, top-down 
processes (Fontolan et al., 2014). A thorough reflection on the theoretical and 
experimental results of this dissertation is deferred to the Discussion. For the moment, 
let us start with an historical overview of research on brain rhythms. 
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2 Brain rhythms  
 

Pacha: What happened? 
Old Man: Well, I threw off the Emperor's groove. 
Pacha: What? 
Old Man: His groove! The rhythm in which he lives his life. His pattern of 
behavior. I threw it off. And the Emperor had me thrown out the window. 
Pacha: Oh, really? I'm supposed to see him today. 
Old Man: Don't throw off his groove! 
Pacha: Oh, okay. 
Old Man: Bewaaare, the grooove. 
Pacha: Hey, are you gonna be all right? 
Old Man: Grooove... 

The Emperor’s New Groove, Disney (2000) 
 

From whatever angle we look at it, the human brain strikes us as being an incredibly 
complex system. Inside approximately 1300 grams of dense, bulky biological matter, 
there are about a hundred families of neurons, the basic units of computation, for a total 
of 86 billion (Azevedo et al., 2009), and more than 1014 estimated synapses, the 
functional contacts between brain cells, bearing a total of 100 different kind of 
neurotransmitters each with its own dynamics. Neuronal spikes travel along about 
176000 km of myelinated axons (average length 10 cm) to reach other neurons (Marner 
et al., 2003) at the speed of ~0.1-100 meters per second (de Callataÿ, 1992). Taken 
together, these facts indicate a great variety of delays and transmission times, which 
lead to the kind of noise-like neuronal activity that is usually observed (Dale and 
Kandel, 1993; Hawkins et al., 1993; Murphy, 1997). And yet, in spite of this intricate 
complexity (Koch, 1999), neurons are not at all careless about each other: their activity 
becomes coordinated, giving rise to periods of synchronized firing followed by quasi-
silent epochs. These alternations are ubiquitous in the brain and can be observed using 
several different neural data recordings techniques, provided that the latter have a good 
temporal resolution (Ward, 2003; Buzsáki and Draguhn, 2004).  

In this chapter I will review the key experimental facts relevant to the study of 
brain oscillations, followed by the possible computational mechanism that could 
generate such rhythmic activity and its potential function(s) in cognitive processing. 

2.1 Historical background and recent developments 
Rhythmic neuronal discharges have been documented in the early 20th century by Hans 
Berger, who is the inventor of the electroencephalography (EEG) technique and was the 
first to detect electrical oscillations in the human brain (Berger, 1929). Thereafter, brain 
oscillations have been studied across many different species and through a miscellany 
of invasive and noninvasive techniques, starting from the aforementioned EEG, at the 
level of the scalp (Tallon-Baudry et al., 1999) and at the subcranial level (Kahana et al., 
1999), but they have also been found in magnetoencephalography signals (MEG) (Siegel 
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et al., 2012), local field potentials (LFP) (Bragin et al., 1995; Jutras et al., 2013), single unit 
activity (SUA) and multi-unit activity (MUA) both in vivo (Sanchez-Vives and 
McCormick, 2000; Lee et al., 2005) and in vitro (Carracedo et al., 2013). Countless clinical 
and fundamental studies have examined oscillatory patterns under the most disparate 
brain states, ranging from conscious processing of complex stimuli (Henry et al., 2014) 
to states of deep coma (Schabus et al., 2011).  

Initially the amplitude of rhythmic oscillations was found to be much larger 
during rest, sleep, unconscious states and under anesthesia. It is for this reason that the 
cognitive and functional role of these patterns have been overlooked for many years, 
and only recently researchers have turned their attention to the potential role of 
oscillations during awake brain states. As a matter of fact, even some of the patterns 
previously thought to be a signature of a lack of consciousness have now been related to 
brain activity in the vigilant state, such as, for example, the replay of spatial memory 
sequences in the hippocampus (Louie and Wilson, 2001). Furthermore, with the help of 
pharmacological tools, brain waves can now be produced in vitro and observed in vivo 
at the level of single cells, allowing for the investigation of causal relations between 
rhythms and behavior. Combined together, these factors prompted the comeback of 
interest towards studying oscillations and their potential functions during cortical and 
subcortical operations (Buzsáki and Draguhn, 2004). They seem to be likely candidates 
for the facilitation of information selection and transmission through input filtering 
(Hutcheon and Yarom, 2000; Akam and Kullmann, 2010), coordination of distant areas 
(Womelsdorf et al., 2007) and binding of perceptual information (Engel et al., 2001; 
Roopun et al., 2008a; Singer, 2013). Similarly, the execution of sensory-motor functions 
(Schoffelen et al., 2005), the formation and persistence of memories (Fell et al., 2001; 
Jensen and Lisman, 2005; Axmacher et al., 2006; Steriade, 2006), and synaptic plasticity 
dynamics (Huerta and Lisman, 1995; Bukalo et al., 2013) also involve oscillations of 
some sort. Nonetheless, the task of going beyond simple correlations between rhythms 
in the brain and behavior, and thus demonstrating causal relationships between 
oscillations and cognitive functions, proved to be impervious. This reflects in the fact 
that, until recently, many prominent neuroscientists were skeptical and considered them 
an epiphenomenon (Koch, 1993; Frégnac et al., 1994; Pareti and De Palma, 2004). It also 
reflects a lack of appropriate methodological tools to properly assess the causal role of 
oscillations: experimental techniques did not allow to selectively manipulate and 
perturb rhythms in vivo, until the very recent emergence of advanced optogenetics 
techniques. This fantastic tool relies on a set of genetically modifications that change the 
molecular composition of the membrane in specific neurons, so that, when targeted with 
light at a given wavelength, the firing activity of these neurons can be enhanced or 
suppressed (Boyden et al., 2005). Future optogenetics studies might have enormous 
potential implications in revealing the actual role of brain waves, if any. In addition, a 
number of methodological precautions must be considered, i.e. to avoid the effect of 
volume conduction from distant areas (Sirota et al., 2008) or to minimize false positives 
when filtering (Quian Quiroga et al., 2001). It becomes crucial then to track down the 
neural mechanisms that generate brain waves, and to tie them to the function they 
perform in the brain, but before doing that let us shortly recapitulate how oscillations 
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are measured in brain recordings. 

2.2 Oscillations and brain functions 
In order to be captured by the macroscopic electrodes of EEG, brain waves like the ones 
observed by Berger must arise from time activity of somewhat synchronized big 
neuronal ensembles. Intuitively, in fact, the asynchronous activity of thousands of 
neurons would produce a bunch of waves with random phases, which, when summed 
together, would on average result in the cancellation of their amplitudes and thus one 
should not be able to measure an electrical signal. Indeed, it is almost impossible to 
avoid the presence of brain oscillations when recording from almost any region in the 
brain, at least on a large spatial scale, but, in addition to the average signal produced by 
the collective dynamics of large cell assemblies, oscillations can as well be detected in 
single neuron activity (Llinás, 1988). The neuronal membrane often displays coherent 
fluctuations in its voltage that can be measured intracellularly or extracellularly in the 
LFP, which contains contributions from all ionic processes occurring in the cell, at all 
levels: soma, axon, dendrites and even synapses (Buzsáki et al., 2012). The number of 
neurons that can be recorded and the spatial resolution of the signal heavily depends on 
the size of the inserted electrode, ranging from the few tens of micrometers of 
microarrays used in animal research (about 1000 neurons with a radius of ~50-120 µm) 
to the few millimeters of stereotactic depth electrodes implanted in epileptic patients 
(about 10000 neurons with a ~0.25-0.5 mm radius). The latter technique, called 
stereotactic electroencephalography (SEEG) is used to record local fields in human 
subjects, as for example in epileptic patients to locate the seizure focus. Intracranial EEG 
(iEEG) methods (stereotactic EEG, SEEG, and electrocorticography, ECoG) have both a 
higher signal-to-noise ratio and a better spatial resolution than any non-invasive 
technique like EEG or MEG (Kahana et al., 2001). Thus, they are well placed in order to 
detect oscillations at all frequencies, even high frequency oscillations (40-120 Hz) that 
are very hard to see in scalp recordings (Lachaux et al., 2012). 
 

 
 

Figure 1. Power laws in brain recordings. 

Power spectrum of a single electrode in human EEG recordings, exhibiting the characteristic 
power-law decay. The log-log scale plot transforms the 1/𝑓𝑓𝛼𝛼 curve into a straight line, whose slope 
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is the exponent 𝛼𝛼 (in this figure 𝛼𝛼~− 2). Subjects were recorded with their eyes closed during 
resting-state behavior. Adapted from (Jirsa, 2009). 
 

2.2.1 1/f background and the meaning of spectral peaks 
When recording from multiple units, regardless of the technique used, the so-called 1/𝑓𝑓 
background noise is an omnipresent feature of the frequency spectrum. Figure 1 shows 
the average power spectrum 𝑃𝑃(𝑓𝑓)  of EEG recordings in humans as a function of 
frequency 𝑓𝑓, computed using complex Morlet wavelets (Goupillaud et al., 1984). By 
fitting the power spectrum to the function 𝑃𝑃(𝑓𝑓) = 𝑓𝑓−𝛼𝛼 one typically obtains an exponent 
in the range 𝛼𝛼 = [0,3] , where the extreme values might be approached only 
asymptotically. A distribution on this kind is called a power law and it has been reported 
in studies regarding the most disparate physical (Bak and Paczuski, 1995), biological 
(Musha and Yamamoto, 1997) and social systems (Baillie, 1996). This class of 
distributions has several peculiar features that make it a rather special class. First of all, 
for large values of 𝑓𝑓, the probability 𝑃𝑃(𝑓𝑓) remains finite and much higher than in the 
Gaussian distribution. Intuitively, this happens because large frequency values result in 
a bigger denominator in 1

𝑓𝑓𝛼𝛼
 , while in power laws they cause a (much more dramatic) 

change in the exponential (𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑓𝑓) = 𝑒𝑒−𝑓𝑓); thus, extreme events are much more likely 
to occur if the underlying process is explained by a power law than the usual Gaussian 
distribution. For this reason power laws are often called fat- or heavy-tailed distributions. 
The second key property is scale invariance: power laws described by the same 
exponent 𝛼𝛼 are scaled versions of each other, so that there is no typical scale or size for 
the variable 𝑓𝑓 . This peculiarity suggests a connection with fractals and with critical 
phenomena in physics that could potentially revolutionize our understanding of the 
brain as a complex system poised in the vicinity of a critical point (Kello et al., 2010). 
Such systems are more efficient in adjusting their internal representations to be good 
proxies of reality (Hidalgo et al., 2013, 2014), a feature that would obviously be of 
utmost interest to neuroscientists. In fact, power spectra estimated from scalp or 
intracranial EEG data indeed show a 1

𝑓𝑓𝛼𝛼
 dependency at least within about two orders of 

magnitude (Freeman et al., 2003) and could be generated thanks to activity-dependent 
time-varying synaptic strengths (Levina et al., 2007). However, the identification of 
underlying processes giving rise to power laws in the brain is still controversial: a line of 
work pursued for example by Destexhe and collaborators has led to the hypothesis that 
1
𝑓𝑓𝛼𝛼

 distribution in brain signals is a consequence of spatial filtering due to the structure 

of extracellular media (Bédard et al., 2006, 2010; Bédard and Destexhe, 2009) and thus 
should be treated as noise instead of a proof for criticality. From a theoretical 
perspective there are, borrowing the words of Rudyard Kipling1, nine and sixty ways of 
constructing power laws, and every single one of them is right: i) from the spectrum of 
some classes of diffusion processes (Milotti, 2002), ii) from a central limit theorem for 
multiplicative growth processes (Ijiri and Simon, 1977; Reed and Hughes, 2002), iii) from 
a superposition of exponentially relaxing processes (Dutta and Horn, 1981), and iv) even 

 
1 ‘In the Neolithic Age’, The Seven Seas (Nabu Press, 2010). 
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from windowed sampling of white noise (Kasdin, 1995). At the moment no consensus 
has been reached regarding the explicit mechanisms that originate power laws in brain 
signals, although an interesting view links these distributions to the activity of coupled 
neural oscillators in the vicinity of one or more attractors of the dynamics (Reed and 
Hughes, 2002; Teramae and Tanaka, 2004; Deco and Jirsa, 2012). In fact, a system of 
brain oscillators, almost uniformly distributed on a logarithmic scale along the 
frequency spectrum as in Figure 2, could give rise to such a scenario (Buzsáki and 
Draguhn, 2004). Brain rhythms are usually visible in the frequency spectrum of short-
term EEG or MEG as ‘bumps’, standing out from the 1/𝑓𝑓 shaped background activity. If 
different frequency bands can be present at rest, they can be modulated by cortical input 
or neuromodulators during the performance of an active cognitive or motor task. Also, 
distinct rhythms can coexist and sometimes interact, giving rise to very interesting 
effects that will be reviewed below. 
 

 
 

Figure 2. Brain rhythms in the frequency spectrum. 

Normalized amplitude of different brain rhythms generated in cortical slices of rodents. The 
spectral peaks, that identify the different rhythms (frequencies may vary across species), are well-
separated in frequency and are generated in different layers of the cortical sheet. Adapted from 
(Roopun et al., 2008a). 
 

2.2.2 Synchrony and cross-frequency coupling 
Theoretical studies had already pointed out that grouping together neurons which are 
carrying similar (to achieve redundancy and therefore robustness) or complementary 
(so as to bind together the various pieces of information related to a common object) 
information must be a fundamental task of the brain (Tsukada et al., 1996). This claim 
has gain much more attention recently, as it has been actually shown that neural 
assemblies in sensory cortex do display a dynamical and rhythmic time course, 
particularly those who fire in the Gamma (30-100 Hz) frequency band (Shadlen and 
Movshon, 1999; Fries et al., 2002; Buzsáki and Wang, 2012), grouping together the 
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activity of cells on a small spatial scale. The coordination of these neural populations in 
time and space would also be fundamental in order to enhance (or inhibit) 
communication between distant areas, a goal that can be achieved by tuning the two 
populations so that they spike in phase (or antiphase), according to the “communication 
through coherence” hypothesis proposed by Fries and collaborators (Fries, 2005). 
Further theoretical work by Akam and Kullman investigated the potential advantages 
of spatial and temporal oscillations in selectively transmitting population-coded 
information, even in the presence of asynchronous background noise from other neural 
sources (Akam and Kullmann, 2010). What is the mechanism that underlies the control 
of Gamma neural assemblies then? Several lines of evidence, both from computational 
and experimental studies, converge towards low frequency oscillations (1-20 Hz) as 
being well suited for the coordination of neurons on larger spatial scales (Buzsáki and 
Draguhn, 2004) using long-range connections, while fast Gamma waves act prevalently 
on short-range monosynaptic synapses (von Stein and Sarnthein, 2000). The interactions 
between low and high frequency rhythms, named cross-frequency coupling (CFC), have 
been extensively observed both with in vitro and in vivo experiments (Jensen and 
Colgin, 2007; Young and Eggermont, 2009), and can take complex forms. CFC will be 
the object of a review article we are currently writing (Hyafil, Giraud, Fontolan, & 
Gutkin, in preparation). In fact, an oscillation is defined through three main features 
(frequency, amplitude and phase) that can interact and generate up to nine distinct 
coupling combinations. However, only four of all potential pairs are actually 
meaningful: phase-frequency coupling, i.e. when the phase of a slow oscillation (SO) 
interacts with the frequency of a fast rhythm (FO); phase-phase coupling (i.e. phases of SO 
and FO); phase-amplitude coupling (i.e. phase of SO and amplitude of FO); and, last, 
amplitude-amplitude coupling (i.e. amplitudes of SO and FO). The latter is the easiest to 
measure although its functional relevance has not been understood yet (Canolty and 
Knight, 2010): its presence, either measured between two areas or within a single region, 
has been linked to increased membrane excitability, possibly via a common input source 
(Young and Eggermont, 2009). Conversely, phase-phase couplings are hard to reveal 
experimentally due to the smallness of the effect (Hunter and Milton, 2003) and the fact 
that they are typically found in conjunction with phase-amplitude coupling. Recently, 
with the appropriate methods to measure phase of non-harmonic oscillators, phase-
phase coupling were revealed in animal models (Akam et al., 2012; Belluscio et al., 
2012). Phase-frequency couplings are extremely hard to disentangle from other forms of 
coupling. The most interesting and prominent of the cross-frequency combinations is 
indeed phase-amplitude coupling (PAC, not to be mistaken with primary auditory 
cortex). PAC has been reported between many distinct frequency bands, using a myriad 
of recording techniques on several different organisms and brain areas (Canolty et al., 
2006; Schroeder and Lakatos, 2009; Belluscio et al., 2012; van der Meij et al., 2012). 
Perhaps the most famous example of PAC has been found in the hippocampus, 
involving Theta (3-8 Hz) and Gamma (30-100 Hz) frequencies, both in rodents (Bragin et 
al., 1995; Tort et al., 2007a; Wulff et al., 2009; Lisman and Jensen, 2013) and humans 
(Axmacher et al., 2006; Staudigl and Hanslmayr, 2013), the interpretation being that the 
phase of slow Theta cycles correlates with the power of fast Gamma rhythm to represent 
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sequences of related objects (features). This idea, originally formulated by Lisman 
(Lisman and Idiart, 1995; Jensen and Lisman, 2005), was initially applied to the encoding 
of multiple items in working memory by the hippocampus. More recently, it has been 
extended to other neural systems, frequencies and computational functions, suggesting 
that the PAC scheme could be a fundamental configuration of mammalian brain 
(Canolty and Knight, 2010). For example, while Theta-Gamma PAC in the hippocampus 
could underpin non-visual working memory, Alpha-Gamma PAC over parietal-
occipital networks (where Alpha has a frequency range of 9-13 Hz) is thought to 
mediate the visual part of working memory (Roux and Uhlhaas, 2013). Similarly, Theta-
Gamma coupling has been linked to spatial navigation in rodents, where, specifically, 
Theta sequences reflect the capacity of the hippocampus to bind together and store 
information about spatial locations at a rate of one location per Gamma cycle (Lisman, 
2005; Lisman and Buzsáki, 2008). Alpha-Gamma coupling in humans and in monkeys 
was instead proposed to be involved in the spatial encoding of the visual field in 
primary visual cortex whereby, in this instance, the order of activation of neural 
representations within one Alpha cycle would depend on the saliency of the 
corresponding stimuli (VanRullen and Koch, 2003; Jensen et al., 2014). Even more 
importantly, a series of recent works has highlighted the presence of a whole hierarchy 
of nested oscillators, i.e. a battery of rhythms mutually linked through PACs, within 
visual (Lakatos et al., 2008; Schyns et al., 2011) and auditory (Lakatos et al., 2005) regions 
of primates. The authors measured the LFP/EEG signal across different layers and 
regions, and noticed that distinct rhythms are tied to each other through PACs. Such a 
system of interacting neural populations, firing at distinct frequencies, is a powerful tool 
to regulate neuronal excitability inside a particular region and within discrete time 
windows. Furthermore, this interplay brings a major contribution to the understanding 
of how neurons might encode stimulus features. 

A number of influential articles have put forward the idea that neurons firing in 
the Gamma band are the readout units of the brain, not only in the hippocampus to help 
spatial navigation, but also in prefrontal and sensory cortices (Fries et al., 2007; Lisman 
and Jensen, 2013). Per contra, the actual neural code is unknown at the moment: despite 
the countless number of publications on this subject, for many years neuroscientists 
have limited their interpretation to the firing rate in order to explain their data, i.e. the 
average number of spikes emitted by a neuron per unit time (often further averaged 
across trials). Alternative strategies, such as taking into account the exact temporal order 
of spikes, are appealing given that they are more informative (Diesmann et al., 1999; 
Salinas and Sejnowski, 2001), albeit much more fragile, since they are much more 
vulnerable to trial-by-trial variability of neural signal (Ferster and Spruston, 1995; 
Softky, 1995). In order to reduce the influence of noise, the time windows within which 
firing rates are computed can be discretized into smaller bins, and spikes can be labeled 
according to the particular bin inside which they occur (Optican and Richmond, 1987). 
Tagging action potentials enhances the information decoded from recorded neurons 
(Panzeri et al., 2010), demonstrating that spike trains are remarkably reliable across 
trials, at least within an optimal time bin. However, this binning process is artificial, 
meaning that the brain has no access to the binning scheme imposed by experimenters. 
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So, does the brain have access to some kind of internal time discretization strategy? Low 
frequency oscillations, like those in the Theta range, can be the answer to this question, 
by providing the internal time reference necessary to enhance the encoding of 
information in the network. Being coupled to neurons participating in the Gamma 
rhythm, their time course relative to Gamma spikes is quite consistent and provides a 
powerful tool to define the decoding window for a much more accurate readout 
(Brasselet et al., 2012; Kayser et al., 2012; Panzeri et al., 2014). In the case of PAC, a 
straightforward encoding scheme in constructed by combining the temporal sequence of 
Gamma neurons spikes with a phase-code (Hopfield, 1995; Varela et al., 2001; Mehta and 
Lee, 2002; Kayser et al., 2009) obtained by binning the phase of slow frequency bands 
into 𝑛𝑛 intervals, and then assigning a tag to each spike according to the interval in which 
they fall (Figure 3). Hence, cross-frequency coupling, and especially phase-amplitude 
coupling, may be a rather efficient method to organize the collective behavior of 
neurons. With the help of computational models we show that this combinatorial code 
not only maximizes the encoded auditory stimulus information, but also adjusts the 
timing of sensory output for upstream decoding neurons (Hyafil et al., 2015). 

Given the pervasiveness of CFC, the question is whether or not this scheme 
constitutes a fundamental blueprint for communication in the brain. It becomes 
therefore necessary to rule out the possibility that it might reflect an epiphenomenon, 
and to provide even more compelling evidence to bind together cross-frequency 
couplings and brain functions, with the help of methodological advancements. We are 
currently writing a review paper on cross-frequency coupling, with the aim of 
illustrating the link between the mechanistic functions and the underlying neural 
circuits generating the couplings (Trends in Neurosciences, review proposal accepted). 

 

 
 

Figure 3. Phase information code. 

Schematic illustration of different neuronal codes. In the spike count (or firing rate) code we simply 
sum the number of spikes occurring within a window of fixed length (1, 2, 3 or 4). In the time-
partitioned code, the window is divided into four subintervals, and each spike is assigned to a 
subinterval depending on its timing. In the phase-partitioned code, we assign an additional label to 
each spike, depending on the phase of low frequency LFP at which a spike occurs. The latter code 
is much more informative (Hyafil et al., 2015) and rises from an endogenous reference mechanism 
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that could be accessible to neurons, in contrast with the other codes that are somehow artificially 
determined. Adapted from (Kayser et al., 2009). 
 

2.2.3 Phase-amplitude coupling and causality 
Having established that hyperpolarization-depolarization cycles within a given layer or 
area give rise to oscillatory patterns in the LFP, and that multiple rhythms coexist and 
intertwine, it becomes then crucial to establish whether the coupling is just apparent, as 
it would result if the two rhythms were driven by a common input, or is caused by 
directed influence from one rhythm to the other. Currently, the most popular family of 
measures used to assess the causal interactions between time series is that of Granger 
causality GC). First introduced by Clive Granger in 1969 (Granger, 1969) to better 
understand economic data, this measure lies at the core of many causal inference 
methods such as information theory based estimators (e.g. transfer entropy) and 
classical linear estimators based on correlation or coherence (partial directed coherence, 
directed transfer function). In its simplest implementation, based on multivariate 
autoregressive models (MVARs), has already been successfully applied to large-scale 
brain data (Bressler and Seth, 2010; Brovelli, 2012; Saalmann et al., 2012). This approach 
relies on a few simple steps and works for as many variables as desired. Here, we 
illustrate the computations for the two variables case. First, the current value of a time 
series is modeled as the linear sum of its past values weighted by some vector, plus a 
term incorporating the unpredicted stochastic variations: 

 𝑋𝑋𝑡𝑡 = �𝑎𝑎𝑖𝑖𝑥𝑥𝑋𝑋𝑡𝑡−𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡𝑥𝑥  , (2.1) 

where 𝑛𝑛 is the order of the autoregressive model. Then we construct a second model, 
where the past of a second variable 𝑌𝑌 is added to Equation 2.1: 

 𝑋𝑋𝑡𝑡 = �𝑎𝑎𝑖𝑖𝑥𝑥𝑥𝑥𝑋𝑋𝑡𝑡−𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+�𝑎𝑎𝑖𝑖
𝑥𝑥𝑥𝑥𝑌𝑌𝑡𝑡−𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝜂𝜂𝑡𝑡𝑥𝑥  , (2.2) 

and a similar equation for 𝑋𝑋𝑡𝑡. Now, if the presence of the second term in Equation 2.2 
helps to reduce the error term 𝜂𝜂𝑡𝑡  with respect to 𝜀𝜀𝑡𝑡 , then 𝑌𝑌 is said to cause 𝑋𝑋, i.e. its past 
reduces the uncertainty over the present of 𝑋𝑋. The Granger causality coefficient is easily 
defined as: 

 𝐺𝐺𝐺𝐺𝑌𝑌→𝑋𝑋 = log �
var(𝜀𝜀𝑡𝑡𝑥𝑥)
var(𝜂𝜂𝑡𝑡𝑥𝑥)

� . (2.3) 

An equivalent measure in the frequency domain has been introduced by Geweke 
(Geweke, 1982), based essentially on applying a Fourier transform on the MVAR so that: 

 �
𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔) 𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔)
𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔) 𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔)� �

𝑋𝑋(𝜔𝜔)
𝑌𝑌(𝜔𝜔)� = �

𝜂𝜂𝑥𝑥(𝜔𝜔)
𝜂𝜂𝑥𝑥(𝜔𝜔)� , (2.4) 

where 𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔) = 1 −∑ 𝑎𝑎𝑘𝑘𝑥𝑥𝑥𝑥𝑒𝑒−𝑖𝑖𝑖𝑖𝑘𝑘∞
𝑘𝑘 , 𝐴𝐴𝑥𝑥𝑥𝑥(𝜔𝜔) = 1 −∑ 𝑎𝑎𝑘𝑘

𝑥𝑥𝑥𝑥𝑒𝑒−𝑖𝑖𝑖𝑖𝑘𝑘∞
𝑘𝑘 , etc. 

If matrix 𝑨𝑨(𝜔𝜔) is invertible, by applying 𝑨𝑨−𝟏𝟏(𝜔𝜔) to both sides of Equation 2.4 we can 
write 

 �
𝑋𝑋(𝜔𝜔)
𝑌𝑌(𝜔𝜔)� = �

𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔) 𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔)
𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔) 𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔)� �

𝜂𝜂𝑥𝑥(𝜔𝜔)
𝜂𝜂𝑥𝑥(𝜔𝜔)� , (2.5) 

where 𝑯𝑯(𝜔𝜔) is called transfer matrix. The spectral matrix 𝑺𝑺(𝜔𝜔)  of the process can be 
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factored in terms of the transfer matrix 𝑯𝑯(𝜔𝜔), its complex conjugate 𝑯𝑯∗(𝜔𝜔) and the 

covariance matrix 𝚺𝚺 = �
var(𝜂𝜂𝑡𝑡𝑥𝑥) cov(𝜂𝜂𝑡𝑡𝑥𝑥 , 𝜂𝜂𝑡𝑡

𝑥𝑥)
cov(𝜂𝜂𝑡𝑡

𝑥𝑥 , 𝜂𝜂𝑡𝑡𝑥𝑥) var(𝜂𝜂𝑡𝑡
𝑥𝑥)

�, according to the spectral factorization 

theorem (see Gevers and Anderson, 1981, for further details): 
 𝑺𝑺(𝜔𝜔) = 𝑯𝑯(𝜔𝜔) 𝚺𝚺 𝑯𝑯∗(𝜔𝜔) . (2.6) 
The two diagonal elements of the spectral matrix, 𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔) and 𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔) simply represent 
the spectra of variables 𝑋𝑋 and 𝑌𝑌, while off-diagonal terms, 𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔) = 𝑆𝑆𝑥𝑥𝑥𝑥∗ (𝜔𝜔), contain the 
cross-spectrum of the two variables. After proper normalization ((Chen et al., 2006), the 
causal interdependence in the frequency domain can be expressed as the ratio: 

 𝐺𝐺𝐺𝐺(𝜔𝜔)𝑌𝑌→𝑋𝑋 = log �
𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔)

Σ𝑥𝑥𝑥𝑥|𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔)|2� , (2.7) 

where 𝑆𝑆𝑥𝑥𝑥𝑥(𝜔𝜔) = Σ𝑥𝑥𝑥𝑥|𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔)|2 + Σ𝑥𝑥𝑥𝑥|𝐻𝐻𝑥𝑥𝑥𝑥(𝜔𝜔)|2. The first term, equal to the denominator, 
represents the portion of the spectrum due to 𝑋𝑋𝑡𝑡, whereas the second term reproduces 
the power of 𝑋𝑋𝑡𝑡 contributed by 𝑌𝑌𝑡𝑡 . Thus, if 𝑌𝑌𝑡𝑡  has a direct impact on the spectrum of 𝑋𝑋𝑡𝑡 at 
a given frequency 𝜔𝜔, then 𝐺𝐺𝐺𝐺(𝜔𝜔)𝑌𝑌→𝑋𝑋 ≠ 0 and 𝑌𝑌𝑡𝑡  is said to cause 
𝑋𝑋𝑡𝑡 at frequency 𝜔𝜔. Although the MVAR approach is simple and powerful, it requires a 
few conditions to be met in order to work correctly: i) the integral of 𝐺𝐺𝐺𝐺(𝜔𝜔)𝑌𝑌→𝑋𝑋 over all 
frequencies must be equal to the time-domain GC; ii) the time series 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡  must have 
zero mean and their covariance must be stationary. Unfortunately, time series recorded 
from the brain often do not meet these criteria, plus it has been shown that the use of 
bandpass filters may destroy the correct  causal relations (Seth, 2010), making the 
MVAR formulation useless. 
 An alternative, more powerful approach to compute GC on brain data has been 
proposed more recently by Dhamala and collaborators (Dhamala et al., 2008). Their 
formulation is nonparametric, meaning that matrices 𝑺𝑺,𝑯𝑯 and 𝚺𝚺 are not derived from the 
MVAR parameters but are inferred directly from a time-frequency decomposition of the 
time series. For brain recordings, this means that the spectral matrix 𝑺𝑺 can be easily 
obtained from any spectral representation of the data (Fourier decomposition, wavelet 
transform, etc.), avoiding the flaws of MVARs, such as having to use very high order 
models to account for nonstationarity, thereby increasing the estimation error and 
potentially introducing spurious causal effects (Detto et al., 2012). Transfer matrix 𝑯𝑯 and 
covariance matrix 𝚺𝚺  are computed using Wilson’s spectral factorization algorithm 
(essentially a series expansion in nonnegative powers of the exponential function 
𝑓𝑓(𝜔𝜔) = 𝑒𝑒𝑖𝑖2𝜋𝜋𝑖𝑖). In the case of Morlet wavelet decomposition (Goupillaud et al., 1984), i.e. 
the approach we used in (Fontolan et al., 2014), this allows to restrict the validity of the 
aforementioned criteria to the length of the wavelet, a condition much easier to fulfill. In 
this form, Granger causality has been successfully employed to test directional 
influences between two or more brain areas at a given frequency (Bosman et al., 2012; 
Bastos et al., 2014; Fontolan et al., 2014; van Kerkoerle et al., 2014), but it cannot be used 
to assess causal interactions across frequencies as for example in a PAC scheme. It does 
not exist, at the moment, any linear measure to assess causal interactions between two 
separate frequencies. The only available measure is dynamical causal modeling (DCM, 
see C. C. Chen, Henson, Stephan, Kilner, & Friston, 2009, and Friston, Moran, & Seth, 
2013), which is nonlinear and requires a set of somewhat precise hypotheses, being 
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model-based. Indirect causal interactions can be revealed to a substantial extent using a 
combination of GC methods and standard PAC measures such as the modulation index 
or circular-to-linear correlation, as it has been envisaged for the first time in our article 
(Fontolan et al., 2014, see Appendix A and Penny, Duzel, Miller, & Ojemann, 2008, for 
an exhaustive review of PAC methods).  

Throughout this Section we have seen how synchronized assemblies of neurons 
can give rise to nontrivial patterns of alternating excitations and inhibition that can be 
revealed with almost all brain recording techniques. In the next Section we will turn our 
attention to a brief but complete review of recent literature on computational models of 
neuronal oscillations and examine the possible different network architectures that 
produce such rhythmic patterns in cortical circuits. 

3 Computational models of brain oscillations 
 

The best material model of a cat is another, or preferably the same cat. 

Norbert Wiener, Philosophy of Science 

Since the very first recordings of neural activity, scientists have sought to formalize their 
observations into a mathematical framework, for a better understanding of the 
implications and potential consequences of the experimental results. In the context of 
brain rhythms, theoretical analysis and computational modeling are key tools for 
understanding how oscillations are generated, both at the cellular and at the circuit 
level, to establish why they work in that particular way and find out which function (if 
any) they subserve. A theoretical framework allows to tie together these aspects into a 
compact, efficient formal representation, providing testable predictions and, ideally, a 
set of unifying principles that underlie cortical rhythms. We will now review the 
biophysical mechanisms giving rise to these rhythms in individual neurons and in 
neuronal populations. 

3.1 Single neuron models 
It is well known that he membrane potential of individual neurons displays oscillatory 
patterns at different frequencies (Llinás and Yarom, 1986; Llinás, 1988, 2014; Wang, 
2010), suggesting that the simplest source of brain oscillations is the neuron itself. We 
may, in fact, consider all neurons as oscillators, as long as they exhibit periodic or quasi-
periodic firing in response to an external constant current drive 𝐼𝐼𝑒𝑒 . Generating a spike is, 
as a matter of fact, a dynamical process involving several internal (i.e. ion channels, 
membrane properties, neuronal topology) and external (i.e. chemical and electrical 
synaptic input from coupled surrounding neurons, LFP oscillations) variables across a 
myriad time scales. The most basic essential ingredients to obtain the nonsinusoidal 
wave patterns that are typical of biological oscillators (Kruse and Jülicher, 2005), 
irrespective of the particular system under consideration, are a rapid excitation followed 
by a relatively slow inhibition. This type of nonlinear dynamical system is an example of 
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relaxation oscillator, commonly found in biological processes (Hill, 1933; Mirollo and 
Strogatz, 1990; Wang, 2001). During the generation of a spike, neurons behave as 
relaxation oscillators whose two crucial components are, in this particular case, voltage-
gated activation of sodium current and subsequent activation of potassium channels. In 
the phase space, such system normally lies in a global attractor state when at rest or 
when in presence of weak (subthreshold) inputs, but it gets rapidly activated once a 
strong enough stimulus pushes the dynamics to make a wide excursion above 
threshold. Finally, the inactivation of sodium channels and the opening of potassium 
pumps bring the system back to the stable resting state. One might ask whether the 
fundamental dynamical patterns of a topologically complex real neuron, potentially 
implicating more than a hundred coupled variables (Yamada et al., 1989), might actually 
be grasped by using only an exiguous number of components. The answer is, as we will 
see, yes in most cases, at least as far as synchronization properties are concerned. This 
mathematical reduction is extremely useful since low dimensional systems are certainly 
more tractable and sometimes even analytically solvable. The famous Hodgkin-Huxley 
(H-H) model (Hodgkin and Huxley, 1990) does a pretty good job mimicking a 
pyramidal neuron by modeling its dynamics with a set of four nonlinear differential 
equations. The most important of these equations defines the current-voltage relation, 
while the remaining three equations describe the activation of ion channels during spike 
generation. The H-H equation set accounts for many dynamical patterns observed in 
real data, like sub and suprathreshold behaviors, adaptation, bursting. At the price of 
being able to account for only one of these behaviors at a time, the H-H model can be 
further simplified by reducing the number of variables. Although the details of ionic 
dynamics are important for spike generation mechanisms and to compute the time it 
takes to repolarize the membrane potential, reduced models are useful to simulating 
large networks, due to their lower computational weight. Examples of simplified model 
include, in descending order of complexity, the Fitzhugh-Nagumo model (Fitzhugh, 
1961; Nagumo et al., 1962), Izhikevich’s neuron model (Izhikevich, 2004), and the 
integrate-and-fire (IF) neuron (Gerstein and Mandelbrot, 1964; Abbott and van 
Vreeswijk, 1993) in all its forms (linear, quadratic or exponential). The latter is 
particularly interesting in order to simulate large-scale neuronal oscillations (Burkitt, 
2006), especially in its quadratic configuration (see Appendix B). For the moment let us 
introduce the leaky integrate-and-fire neuron with the help of Figure 4: it consists of a 
point-like physical entity whose voltage is described by a circuit containing one 
capacitance 𝐺𝐺, a single resistor 𝑅𝑅 to account for membrane current leakage, both driven 
by an external current 𝐼𝐼(𝑡𝑡) symbolizing synaptic input from other neurons. Whenever 
the voltage 𝑉𝑉 reaches a threshold value 𝑉𝑉𝑡𝑡ℎ the neuron emits an instantaneous spike and 
the switch closes the circuit. When the system is short-circuited it means that the 
integrate-and-fire neuron is insensitive to further inputs for a fixed amount of time 𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓 . 
Such simple circuit only captures the very basic features of a biological neuron, 
although adding a voltage-dependent capacitance that allows to model the rapid 
opening of sodium channels during spike generation can of course enrich it. When the 
capacitance dependency is quadratic the model is called quadratic integrate-and-fire (QIF, 
Ermentrout and Kopell, 1986). The QIF is an example of type I neuron, whose canonical 
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form is called the theta model: for their importance in computational neuroscience, the 
two models are reviewed in Appendix B. Neuron models are classified into type I or II 
depending on the particular class of bifurcations they display: type I neurons are 
associated with saddle-node (SN) bifurcations, and their oscillation frequency approaches 
zero when reducing the input drive; instead, the onset of oscillations in type II cells (e.g. 
the H-H model) occurs at a finite frequency. Pyramidal excitatory neurons seem to 
behave like type I or II models depending on the area and the cortical layer considered 
(Tateno and Robinson, 2007; Tsubo et al., 2007), while inhibitory interneurons’ behavior 
appears to be closer to type II (Tateno et al., 2004; Mancilla et al., 2007). This hence 
means that the QIF model is better suited to simulate a pyramidal cell in 
granular/infragranular layers (Tsubo et al., 2007), and that its spiking frequency can be 
made as low as desired, by varying the bifurcation parameter, i.e. the ratio of excitation 
and inhibition (see Appendix B). In the next paragraph we will see what happens if we 
start connecting neurons to each other, using the computational models we have just 
introduced here. 
 

 
 

Figure 4. Electrical circuit of the neuronal integrator. 

Schematic diagram of electrical circuit describing the integrate-and-fire model. The external 
current 𝑰𝑰(𝒕𝒕) charges the RC circuit. The voltage 𝑽𝑽(𝒕𝒕) across the capacitance is compared to a 
threshold θ. If 𝑽𝑽(𝒕𝒕) >  𝜃𝜃 at time 𝒕𝒕 = 𝒕𝒕∗ a spike pulse 𝛿𝛿(𝒕𝒕 – 𝒕𝒕∗) is emitted. The system is then short-
circuited for a time 𝒕𝒕𝒓𝒓𝒓𝒓𝒓𝒓 by closing the switch on the right branch. 
 

3.2 Neuronal networks: circuitry for oscillations 
Even if we have just seen that a single neuron can produce a well-defined oscillation by 
spiking regularly in time, we know that cortical neurons are all highly interconnected 
through many excitatory and inhibitory synapses. Many physical and biological systems 
can be viewed as an ensemble of local subsystems, coupled to each other to produce a 
collective behavior. In other words, borrowed from physics, a system made of several, 
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often countless, degrees of freedom can be quickly brought down to a system of just a 
few degrees of freedom, thanks to the mutual interactions between its oscillating 
elements. In physics this phenomenon is called slaving principle (Haken and Sauermann, 
1963). In the case of cortical circuits, neural cells might fire at very different frequencies 
when isolated, but, when connected, they are attracted toward a single common spiking 
frequency. This scenario gives rise to a class of periodic or quasi-periodic phenomena 
named strong rhythms. When, instead, the system exhibits a single average collective 
mode of oscillation but its elements are still oscillating at distinct frequency, the rhythm 
is said to be weak or sparse. The two main parameters that determine the strength of the 
considered rhythm are obviously the potency of the coupling and, when present, the 
intensity of any external driving input. Coupling intensities (i.e. synaptic weights) can 
be quite heterogeneous in the brain, giving rise to both types of rhythms serving 
different purposes (Brunel, 2000; Brunel and Wang, 2003; Kopell et al., 2010; Buzsáki 
and Wang, 2012). Also, computational studies have shown that neuronal oscillations can 
rise in presence of both irregular (Brunel and Hakim, 1999; Mongillo and Amit, 2001) 
and synchronized input (Börgers and Kopell, 2005; Kopell et al., 2010), depending on the 
considered parameter set. An important tool to study synchronization in presence of a 
small rapid inputs is the Phase Response Curve (PRC) defined as the time (or phase) shift 
in the oscillation cycle induced by an infinitesimal perturbation (Kuramoto, 1984; 
Hansel et al., 1995; Ermentrout, 1996). Let us consider a neuron which exhibits intrinsic 
firing with constant period 𝑇𝑇, a PRC measures the advancement (or delay) provoked by 
a small perturbation occurring at time 𝑡𝑡, or, equivalently, at phase 𝜑𝜑 (see Appendix B). 
PRCs have been measured experimentally in single neurons by stimulating the soma 
and measuring the changes time to successive spikes, and computed theoretically for 
the different classes of neural models. Previous works (Ermentrout, 1995; Brown et al., 
2004) have thus pointed at the important qualitative difference between type I and type 
II models: the PRCs of type I models are always positive when stimulated with an 
excitatory input, while those of type II neurons, rather counterintuitively, present a 
negative portion, i.e. a region in the phase space where an excitatory stimulus will 
induce a delay in the generation of the next spike. Intuitively, the shape of the PRC is 
particularly relevant to understand the synchronization properties of interconnected 
cells (Smeal et al., 2010), especially since it can be extended to stronger and longer 
interactions (Gutkin et al., 2005). The synchronization properties of brain networks, in 
fact, can be predicted by computing the long term phase relationship of two (or more) 
mutually interacting neurons in the PRC formalism, provided that the effect of the 
perturbation is lost after maximum two cycles (Oprisan and Canavier, 2006). As a result, 
previous studies have found that both excitation and inhibition can lead to synchronize 
patterns of activity (Van Vreeswijk et al., 1994; Terman et al., 1998), although inhibition 
is more suitable than excitation (Hansel et al., 1995) in order to create stable 
synchronization. It is still debated whether reduced models combined with the PRC 
formalism is actually a useful method to simulate and study biological neural networks, 
given the degree of complexity of real brain circuits. For the purpose of this thesis we 
adopt the opinion expressed by the authors of (Smeal et al., 2010), i.e. that even if several 
quantitative and a few qualitative details are lost, the most important features of those 
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circuits are still represented in the models mentioned above. The interested reader will 
find an exhaustive review on this topic in the article of Smeal and collaborators (Smeal 
et al., 2010).  

Nevertheless, even if PRCs are useful in many situations and allow for a 
qualitative understanding of even rather strongly coupled systems, it becomes 
sometimes necessary to use numerical simulations in order to grasp the quantitative 
details and make the correct predictions for future experimental manipulations. This is 
the case for Gamma rhythms in hippocampus and neocortex. Indeed, we know from in 
vitro experimental works that there exist two main mechanisms of inhibition-based 
strong rhythms (Whittington et al., 2000; Tiesinga and Sejnowski, 2009; Pietersen et al., 
2014): the interneuron network Gamma (ING) where a population of inhibitory 
interneurons are firing together thanks to self-inhibition, and the pyramidal interneuron 
network Gamma (PING) where synchrony is achieved by means of coupled excitation 
and inhibition. Whether it will be possible or not to distinguish between these two 
schemes with specific experiments is a still debated issue, nonetheless they are thought 
to be behind the genesis of brain oscillations in neocortex and in the hippocampus, at 
least in the 20-80 Hz range (Isaacson and Scanziani, 2011), and they can both be modeled 
using networks of integrate-and-fire neurons and exponential synapses (Börgers and 
Kopell, 2005) (see Appendix B). Strong, slowly decaying inhibition plays a central role in 
both models, making them difficult to study with the sole PRC method. Indeed, during 
the last ten years, the PING framework has been increasingly employed to model 
Gamma oscillations in sensory areas (Börgers and Kopell, 2005, 2008; Kilpatrick and 
Ermentrout, 2011) and the hippocampus (Kopell et al., 2010; Börgers and Walker, 2013), 
due to its computational simplicity and the biological plausibility of its parameters. A 
population of pyramidal excitatory cells (PE), mainly found in middle layers (IV, V) of 
sensory cortex and in the hippocampus, is mutually coupled to a smaller population of 
fast spiking inhibitory interneurons (FS). An external driving current, that may 
represent input from a distant brain area (or an adjacent column) to layer IV (Douglas 
and Martin, 2004; Binzegger et al., 2009; Atencio and Schreiner, 2010), causes the PE to 
start firing, sparsely since they are not synchronized a priori. When the proper set of 
parameters is chosen, PE spikes reach FS cells and the latter also start firing, providing a 
window of rather strong inhibition that prevents further PE spikes, at least until 
inhibitory synaptic input has decayed. At that point almost all PE neurons are ready to 
fire, so that the subsequent volley is quite synchronized, quickly prompting one more 
inhibitory volley, and so on (Figure 5). 
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Figure 5. PING network. 

Schematics of the pyramidal interneuron network Gamma model (PING). The excitatory network 
of pyramidal neurons (red circle) starts firing, eliciting a volley of spikes from the interneuron 
population (blue circle), which silences the network until inhibition fades and the excitatory 
population is ready to fire again. 
 
Kopell and collaborators have extensively studied the different behaviors of 

PING networks across a wide range of parameter values, with both numerical and 
analytical tools. Gamma rhythm has been observed extensively in granular and 
superficial layers in auditory cortex of macaque monkeys (Lakatos et al., 2005), and the 
interplay between PE and FS giving rise to Gamma bursts has been observed in vivo 
and in vitro (Bragin et al., 1995; Tiesinga and Sejnowski, 2009). We will therefore use the 
PING model as our reference model for generating Gamma band oscillations in 
neocortex.  

After exploring in this Section the mechanisms that are responsible for the 
generation of cortical rhythms within a single frequency band, let us now turn our 
attention to models dealing with cross-frequency coupling (as described in Section 
2.2.2), as they will turn out to be useful to understand the work of this thesis. 

3.3 Nested brain rhythms 
Starting from the results of previous Sections, we briefly review the most interesting 
mechanistic models that produce CFC between two brain rhythms, phase-amplitude 
coupling models in particular. From a computational standpoint, frequency couplings 
can be classified according to: i) whether the cross-frequency perturbation is weak or 
strong, relatively to the intrinsic coupling strength; ii) whether the influence is 
temporally continuous or discrete and what is the size of the difference in time-scale 
between the two rhythms; iii) whether the interaction is one-sided or mutual. As for 
point i), the already mentioned plethora of synaptic connections provides room for both 
weak and strong interactions. The works proposed in (Fontolan et al., 2013; Hyafil et al., 
2015) aim to build an analytical and computational model of Theta-Gamma interplay in 
auditory cortex using neural networks models. During speech recognition, Theta 
oscillations track the amplitude fluctuations in upcoming stimuli and reset their phase 
in correspondence of syllabic boundaries. Theta fluctuations provide a strong and 
continuous modulation to neurons firing in the Gamma range, whose frequency 
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matches the phonemic time-scale (see Section 0). A weak Theta input would not be 
sufficient to reset Gamma, whereas it is crucial to be able to realign the cycle of Gamma 
neurons at the onset of a linguistically pertinent constituent, in order to maximize the 
information encoded in Gamma spike patterns. However, the great majority of 
theoretical studies focus on weak coupling, which is much easier to model using the 
tools of perturbation theory (Ermentrout and Kopell, 1986; Mancilla et al., 2007; Ledoux 
and Brunel, 2011). But what happens when the coupling is strong, i.e. when the 
amplitude of the synaptic input coming from the slowest rhythm is comparable with the 
membrane threshold value? Unfortunately, strong PAC has been analytically studied 
only in the (quite limited) case of discrete pulsatile coupling (Bressloff and Coombes, 
2000; Tort et al., 2007b; Vierling-Claassen and Kopell, 2009). A very interesting article by 
Kopell and colleagues (Kopell et al., 2010) explores a Theta-Gamma PAC by modeling a 
PING coupled with stellate cells in entorhinal cortex (which they identify as equivalent 
to oriens lacunosum-molecular cells in the hippocampus — we will thus use the 
abbreviation O-LM from now on). In fact, these cells might be involved in producing 
Theta resonances due to the characteristic intrinsic currents they possess (White et al., 
2000; Rotstein et al., 2005). Using the PRC formalism extended to three cells networks, 
Kopell and collaborators were able to draw the synchronization properties of two O-LM 
cells mutually coupled to a fast spiking inhibitory basket cell, and showed that the 
networks fires in the Theta frequency range when loaded with biophysically compatible 
parameters (see Figure 6). For this scenario to occur, the two O-LM cells must fire first 
and provide long (around 20 ms) lasting inhibition to the FS basket cell, which is the last 
neuron to emit a spike within a network cycle and progressively synchronizes the two 
O-LM neurons (for the full mathematical derivation see Kopell et al., 2010). Note that a 
single O-LM neuron can actually generate a Theta rhythm, but two O-LM neurons 
would not synchronize unless they receive inhibition from the FS cell. Although their 
model is indeed appealing and their analytical understanding both inspiring and 
intriguing, the existence of connections between O-LM and FS cells has still not been 
reported anatomically or physiologically, as stated by the authors themselves. Instead, 
to generate Theta oscillations in auditory cortex, as described in (Hyafil et al., 2015), we 
opted for a modified version of the PING (Figure 6), where PE neurons are coupled to 
slowly decaying inhibitory neurons like Martinotti cells, which are known to be 
connected to the distal dendrites of pyramidal neurons throughout neocortex 
(Silberberg and Markram, 2007a). We have also tested both models by comparing their 
ability to reset their phase in correspondence of a syllabic boundary, i.e. a steep rise in 
the amplitude of an external input, and we found that the Kopell model was much less 
suited for this purpose than our proposed model. For what concerns the time-scales at 
which the two oscillations operate, the PACs measured in auditory cortex involves a 
slow and a high frequency rhythm whose periods are separated by roughly one order of 
magnitude (e.g. for Theta-Gamma coupling in auditory cortex: 𝑇𝑇𝜃𝜃~300– 100  ms, 
𝑇𝑇𝛾𝛾~30– 10 ms, see Giraud and Poeppel, 2012 and Poeppel, 2014). 
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Figure 6. Theta oscillations networks. 

Computational models used to simulate Theta oscillations in the brain. A) Modified 
Pyramidal Interneuron Gamma model used in (Hyafil et al., 2015), showing two separate modules 
each for generating Gamma (top, red and blue) and Theta (bottom, green and orange) oscillations. 
Within each of the two modules, a population of pyramidal cells (E) is connected to a population of 
fast spiking inhibitory (I). When E cells start firing, they trigger inhibitory spikes in the I population 
that prevents further firing in the E population until inhibition has faded away. Excitatory connections 
from Theta module excitatory neurons to Gamma module pyramidal cells link the two networks 
producing nesting. B) Model of hippocampal Theta oscillations introduced in (Kopell et al., 2010). 
Theta oscillations are generated in the O-LM/I inhibitory loop, where I cells are crucial for the 
synchronization of O-LM cells. The interaction with excitatory E cells further led to the origination of 
the Gamma rhythm. 

 

In addition to the computational results showed in the aforementioned article, 
we explored the analytical properties of the network by considering a simplest version 
of the model: a QIF excitatory neuron coupled to an instantaneous inhibitory synapse 
(representing the FS inhibitory interneuron) and receiving slow sinusoidal input in the 
Theta frequency range (Fontolan et al., 2013). The intriguing results of both models will 
be discussed thoroughly later in this thesis. 

 

4 Neural substrates of speech processing 
 

They were, perhaps, the first people to understand that the Tower was chaos, that order 
was chaos, and that language — the gift of tongues which Jahweh breathed into the 
mouth of Adam — has a rebellious and wayward vitality compared to which the 
foundations of the Pyramids are as dust. 

Bruce Chatwin, The Songlines 
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Language is perhaps the most unique of all the distinctive features of human beings. It 
still represents a puzzle of astonishing complexity both for neuroscientists and linguists, 
at both a high (e.g. grammar, syntax) and low level of description (e.g. transforming 
incoming sounds into neuronal spikes for subsequent auditory perception). The work of 
this thesis concerns the early, yet critical, low-level steps in the understanding of how 
language is processed and represented in the human brain: the chunking of speech into 
its primary constituents, i.e. syllables and phonemes. In physical terms, an uttered 
sentence reaching the outer ear is nothing but a mechanical pressure wave, a flux on 
energy traveling through the air medium. If we plot the amplitude of a speech 
waveform we get a representation like that of Figure 7, where we can immediately spot 
two concurring features: exceedingly fast fluctuations superimposed with slow global 
modulations. How can the neural circuits extract useful information from such an 
apparently simple source? To answer this question, in the next Section we will present a 
brief overview of the auditory system and the computational models that can help us in 
the understanding of its functioning. 
 

 
 

Figure 7. Speech waveform. 

The amplitude of a speech waveform is plotted as a function of time. The envelope (i.e. low 
frequency power fluctuations) is shown in red. Syllables are visible as strong bursts separated by 
silence periods. Smaller scale constituents, such as phonemes, are almost indistinguishable. 

 

4.1 The auditory pathway in a nutshell 
When a sound wave reaches the outer ear, it first passes through the ear canal and then 
reaches the tympanic membrane. Once there, it gets amplified and subsequently 
transmitted to the cochlea by three tiny ossicles, the malleus, the incus and the stapes, 
which globally act both as a bandpass filter and an amplifier. As a result, humans can 
hear sounds in the 20 Hz to 20 kHz frequency range but are most sensitive in the 100-
10,000 Hz range with a peak around 3 kHz (Rosen and Howell, 2011). Unsurprisingly, 
the frequency spectrum of human speech is comprised between 100 and 3000 Hz, i.e. 
near the highest sensitivity peak of the human ear. Once in the cochlea, the speech 
pressure wave travels in a biological fluid and provokes the motion of the basilar 
membrane, whose changes are promptly sensed by a few thousands hair cells. The 
basilar membrane does not move uniformly each time a sound wave is received; 
instead, distinct wavelengths elicit perturbations at different locations of the membrane. 
This anisotropy critically causes short wavelengths (i.e. high frequencies) to be more 
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effectual in moving the membrane at its apical end, while long wavelengths (short 
frequencies) are progressively more effectual towards the basal end. This simple 
topographical organization of frequency representation in the cochlea is called tonotopy, 
and is preserved, at least partially, across the entire auditory pathway from thalamus to 
primary auditory cortex (Kanold et al., 2014).  
 

 
 

Figure 8. Auditory spectrogram of speech. 

Morlet wavelet time-frequency decomposition (spectrogram) of a spoken sentence in French. The 
obtained two-dimensional representation mimics the filtering performed by the human ear. The 
color code represents power at a given time-frequency points. 
 

Essentially, the cochlea decomposes an incoming sound wave in frequency bands, and, 
by doing so, it expands the one-dimensional representation of Figure 7 into a two-
dimensional one, where the instantaneous amplitude is now computed at a given 
frequency band (Figure 8). The time-frequency decomposed speech waveform, named 
spectrogram, is further transmitted from hair cells to the auditory nerve in form of a 
series of electric potentials. These voltage fluctuations activate the release of 
neurotransmitters in the synaptic clefts, which separate the hair cells and the auditory 
nerve fibers. These long fibers finally pass the auditory information, now transduced 
into electrical impulses, to the cochlear nucleus, inside the brain stem. Cells in the 
cochlear nucleus are connected to multiple nuclei belonging to the pons, which, in turn, 
project to the inferior colliculus. The ascending auditory pathway culminates in the 
medial geniculate body (MGB) of the thalamus, from which the information is finally 
relayed to primary auditory cortex (A1, Broadmann area 41). 

4.2 Physiology of the auditory system 
Neocortex is the most recently evolved portion of cerebral cortex in mammals, 
encompassing the areas assigned to the highest cognitive functions such as sensory 
perception, consciousness, language production and comprehension, planning, 
preparation of motor commands. Neocortex looks like a folded sheet made of six layers 
of various thickness, density and cellular conformation. The relatively constant number 
of neurons per millimeter found in neocortex (about 147000 in 1 mm2) lead many 
researchers to the conviction that the distinct sensory systems could have evolved to 
having similar organizational structures (Rockel et al., 1980; Carlo and Stevens, 2013). 
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However, although neocortical regions do appear to share a number of basic principles 
in the spatial arrangement of cells and in connectivity patterns, areas corresponding to 
different sensory cortices are indeed quite dissimilar with respect to both physiology 
and connectivity (Herculano-Houzel et al., 2008), auditory cortex in particular (Read et 
al., 2002). In non–human primates, A1 is located in the superior temporal region of the 
brain and is part of the core region, a group of three adjacent areas that receive 
independent inputs from the MGB. These areas then project to a set of seven areas 
forming the belt region, which in turn sends information out to areas in the parabelt 
region (Kaas et al., 1999). Both the belt and the parabelt regions also receive feebler 
input from the thalamic MGB. The common view at the moment is that the 
spectrotemporal features are extracted in the core region and then integrated in the belt 
and parabelt regions to give rise to the perceived representations of auditory objects. 
Detailed functional analysis in humans has not been performed yet, due experimental 
limitations. However, a primary auditory region has been identified along the Heschl’s 
gyrus (HG), surrounded by a group of non-primary areas that could potentially be 
analogous to the belt and parabelt regions in non-human primates (Figure 9). Since our 
work aims at modeling the extraction of speech features, we will limit the analysis of 
this Section to A1; we start by looking at the laminar organization of A1 as it has been 
investigated in various mammals: rodents, cats and non-human primates. 

We know that the auditory input signal is mainly transmitted from the thalamic 
MGB to pyramidal cells inside layers III and IV (named granular layer because of the 
characteristic appearance of layer IV in visual cortex, as a consequence of the high 
density of pyramidal neurons) of primary auditory cortex, preserving the spatial 
tonotopy observed in the cochlea and along the thalamic pathway (Hackett, 2011). Other 
layers receive non-tonotopic input from other thalamic nuclei, being involved in the 
representation of extra dimensions of sound (e.g. spatial localization of sources). Layer 
III cells project to A1 in the opposite hemisphere (Code and Winer, 1985), to 
supragranular (I and II) and infragranular (V and VI) layers with slightly different 
delays (Atencio and Schreiner, 2010). Although many complex interactions arise 
between layers within one brain area or across different areas, a simplified pictures 
shows that infragranular layers of hierarchically higher areas are mainly responsible for 
feedback projections to supragranular layers of lower areas, while the latter convey 
feedforward information to granular layers of higher areas (Read et al., 2002; Hackett, 
2011). One may also wonder how far these connections extend horizontally in space, 
within one layer (these connections are termed lateral) or across different layers. More 
than fifty years ago, the group of Vernon Mountcastle found that neocortex appears to 
be organized into cylindrical, vertically arranged cortical mini-columns of about 30-90 
𝜇𝜇𝜇𝜇 of diameter and 0.5-2 mm of height (Mountcastle, 1997). Minicolumns have been 
suggested to be a basic computational unit of neocortex, with repeated connections 
patterns both across layers and between different columns. The size and shape do vary 
significantly depending on the area, reflecting distinct functional purposes and 
anatomical changes. In visual cortex, neurons that lie inside the same minicolumn, i.e. 
that share a similar orientation preference, tend to synchronize at Gamma frequency 
(Singer, 2013), making an interesting link to brain rhythms. Mini-columns are further 
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arranged into bigger columns, i.e. ensembles of mini-columns that are activated at the 
same time to perform a given processing step.  

4.3 Computational models of the auditory system 
Every single stage of auditory processing, as described in the two previous Sections, has 
been the object of detailed computational studies (Meddis, 2010). Some of those models 
require an extremely high level of complexity given the intricate structure of those areas, 
the cochlear nucleolus above all. A different kind of approach, more interesting in our 
opinion, was used in (Chi et al., 2005), where the authors avoided the overwhelming 
complexity of each single stage model and, instead, based their model on a careful 
balance of psychoacoustic results and essential neurophysiological findings. The 
computational model of Chi and collaborators can account for the three main 
dimensions that make up a sound, which are detected at the early and central stages of 
the auditory pathway: frequency, temporal and spectro-temporal modulations. The 
model is made of two parts, a subcortical portion addressing the pathway going from 
the cochlea to the thalamus, and an early cortical portion simulating A1 neurons. The 
first tract reconstructs the cochlear time-frequency decomposition plus the 
aforementioned bandpass filter and selective increase of relevant frequencies. Once the 
auditory spectrogram is formed in the subcortical part, the cortical segment detects the 
three modulations modes by modeling neurons according to their spectro-temporal 
receptive field (STRF), i.e. the two dimensional maps showing the firing rate of a 
particular neuron as a function of frequency and time occurrence (Meddis, 2010). In the 
end, the output of the model by Chi and colleagues can be seen as a complex wavelet 
time-frequency decomposition of auditory inputs (Chi et al., 2005). In our effort to build 
a model of speech parsing we used a slightly modified version of this model in order to 
shape the early and central stage auditory pathway, whose output serves as the input to 
the cortical network of nested rhythms we built (see Hyafil et al., 2015).  
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Figure 9. Organization of auditory cortex across different mammals’ species. 

Identification of auditory cortex regions across six species of mammals. Primary auditory fields are 
shaded in dark gray, secondary regions appear in white. In humans, primary auditory cortex 
covers the entire Broadmann area 41 and part of Broadmann area 42. In species where they have 
been measured, tonotopic gradients are also visible (letter H for high frequencies, letter L for low 
frequencies). From (Hackett, 2011). 

 

4.4 Speech representation and processing in the brain 
Although it would be of absolute interest to investigate the nature of speech 
representation in the human brain (whether for example the auditory system became 
progressively tuned to match the speech utterances produced in the vocal tract, or the 
motor system adapted to the frequency range of human hearing), speech is indeed an 
enormously complex topic; we will hence try to restrict our analysis to the essentials. 
First of all, we know that the fundamental units of speech, phonemes, are encoded in 
relatively sparse cortical neural populations along the superior temporal gyrus (STG) 
(Mesgarani et al., 2014), and that they are spatially clustered depending on their 
spectrotemporal features. Furthermore, perceived speech can be reconstructed from the 
filtered spiking activity of these populations, recorded intracranially in humans (Pasley 
et al., 2012). However, while the categorization of speech constituents has been recorded 
with a rather high level a detail, how constituents are actually identified and processed 
by neural networks is not clear at all. Traditionally, the regions involved in speech 
production and perception were thought to be limited to Broca’s and Wernicke’s area 
respectively, and the left hemisphere was considered to be strongly dominant in 
language and speech processing. Studies performed in the last fifteen years have 
progressively overturned this century-old viewpoint, by showing that production and 
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perception of language are much more dispersed functions, implicating several areas of 
both cerebral hemispheres (Schirmer et al., 2012; Poeppel, 2014).  

The great surge of interest in brain oscillations and their remarkable 
correspondence to speech timescales lead to what is perhaps the most interesting 
novelty of auditory research in recent years: the specific role of brain rhythm during the 
processing of speech (Giraud and Poeppel, 2012). Temporal fluctuations at several 
distinct timescales are indeed a distinctive feature of speech waveforms (Rosen, 1992), 
with the information about intonation occurring in the 500-2000 ms range, words in the 
300-500 ms range, syllables 120-300 ms and phonemes 20-80 ms. How the human brain 
can detect and identify these attributes is still not understood, but evidence has emerged 
that coherent brain oscillations seem related to the processing of speech characteristics 
(Poeppel, 2003, 2014; Giraud and Poeppel, 2012). Delta (<3 Hz) Theta (3-8 Hz) and 
Gamma (30-100 Hz) waves have been now recorded extensively during speech 
recognition, both with intracranial and scalp recording techniques. In particular, slow 
Delta oscillations are associated with prosody or any rhythmic information contained in 
perceived sounds (Ding and Simon, 2014). Instead, Theta oscillations have been shown 
to track the fluctuations in the speech envelope (i.e. the low (3-10 Hz) frequency 
variations contained in the speech waveform) by resetting their phase upon the 
presence of syllabic edges (Luo and Poeppel, 2007, 2012; Howard and Poeppel, 2012; 
Gross et al., 2013; Henry et al., 2014). To further support this claim, the steepness of the 
rise in power at syllabic edges has been found to positively correlate with the size of the 
brain entrainment to the envelope fluctuations (Doelling et al., 2014). In fact, the 
envelope frequency range (1-10 Hz) appears to be crucial for the comprehension of 
speech: experiments demonstrated that the intelligibility of a sentence is greatly reduced 
(if not destroyed) when 1-7 Hz fluctuations are filtered out of speech waveforms (Elliott 
and Theunissen, 2009), and, at the same time, phase-locking within the same band is 
improved if speech is properly understood (Peelle et al., 2013). Work from Ahissar and 
collaborators (Ahissar et al., 2001) also showed that speech comprehension correlates 
with the brain capacity to track the low frequency envelope (0-20 Hz), and that both 
drop when speech is time-compressed by a factor bigger than three, which would 
correspond to a syllabic rate higher than about 9 Hz. Syllabic rhythmicity is so 
important that the human brain is capable of understanding speech even in very much 
degraded conditions, if syllabic periodicity is not fully destroyed (Ghitza and 
Greenberg, 2009). With this amount of evidences, the entrainment of intrinsic Theta 
waves can be a viable and effective mechanism to detect the envelope dynamics, and 
hence to chunk incoming speech into subunits of about 110-300 ms, i.e. the average 
syllabic temporal duration (Shamir et al., 2009; Ghitza, 2011). Concurrently, slow 
fluctuations in speech also overlap with the slow temporal dynamics of Gamma power 
(Nourski et al., 2009; Pasley et al., 2012; Kubanek et al., 2013; Zion Golumbic et al., 2013), 
suggesting that Gamma activity might reflect the encoding of fine-grained phonemic 
features enclosed within the syllabic boundaries. Furthermore, both intracortical and 
scalp human recordings in auditory regions of subjects that were listening to speech 
(Nourski et al., 2009; Giraud and Poeppel, 2012; Morillon et al., 2012; Gross et al., 2013) 
reported significant cross-frequency coupling between Theta and Gamma bands (Figure 
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10). Based on these experimental facts, Ghitza and collaborators proposed a conceptual 
model to illustrative a potential role of brain rhythms in the parsing of speech (Ghitza, 
2011). While previous models proceed by first recognizing and categorizing phonemes 
by template matching (Stevens, 2005), the claim in Ghitza’s model is radically different: 
syllables are decoded as long as they are enclosed inside a time frame defined through 
an internal periodic clock running in the Theta frequency range (Figure 11). A clock 
ticking in the Beta frequency range (~20 Hz), coupled to the Theta rhythm so that its 
frequency is a multiple of Theta frequency, tracks dyadic2 content, and an additional 
faster-paced clock potentially parses phonemic spectrotemporal features within the 
Gamma frequency band. Template matching is performed at each stage, from syllables 
to phonemes. A key requirement for this model to be able to explain observed 
behavioral results is that the Theta clock has to align to the beginning of syllables, at 
least to some extent. When the alignment is lost, a Theta time frame might fall in the 
middle of a syllable, making the decoding much harder if not impossible. 
 

 
 

Figure 10. Theta-Gamma frequency coupling in auditory cortex. 

Intracranial EEG data from epileptic human patients. A) Spectrogram of brain activity in human 
primary auditory cortex during listening of speech. Time-frequency decomposition had been 
computed using complex Morlet wavelets and a baseline correction had been applied using a 
portion of the prestimulus period. Activation in the Theta (3-8 Hz) and Gamma (30-120 Hz) 
frequency bands is visible in red. B) Phase-amplitude coupling between low and high frequency 
rhythms in human primary auditory cortex, measured using circular-to-linear correlation. 
Significant coupling occurs between the phase of 2-6 Hz Theta oscillations and the amplitude of 20-
80 Hz Gamma oscillations. 

 

4.5 Multiplexing and oscillations 
The results discussed in the previous Section lead to the hypothesis that acoustic 

 
2 Dyadic units were first defined by (Peterson et al., 1958) as i) containing 

parts of two phonemes with their overlapping spectrotemporal features 
somewhere in the middle; ii) having its beginning and ending at the phonetically 
most stable position of each phoneme.  
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features can be encoded using distinct, although coupled, cortical rhythms, allowing the 
auditory hierarchy to achieve some kind of multiplexing, i.e. to make different areas 
communicate with each other by using a number of independent frequency channels 
but only a single transmission line (i.e., in neural terms, a single readout population). 
Multiplexing is an appealing strategy for the brain: it would favor interaereal 
communication and it could optimize the encoding/decoding of features pertaining to 
different stimuli (Akam and Kullmann, 2010, 2014; King and Walker, 2012). Recently, it 
has been proposed that the auditory system could use a multiplexed transmission line 
in order to segment speech, formed by a hierarchy of oscillators coupled together 
(Ghitza, 2011; Giraud and Poeppel, 2012; Gross et al., 2013). As a matter of fact, a 
potential explanation of the observed Theta-Gamma CFC in auditory cortex (see Figures 
10 and 11) would be that Theta oscillations are able to entrain to the syllabic fluctuations 
of incoming speech, thereby providing a window of opportunity for Gamma neurons to 
fire and transmit sensory information to areas higher in the auditory hierarchy, in a 
bottom-up fashion (Giraud and Poeppel, 2012). Such a scenario would imply that 
stimulus information is passed to upper regions in a multiplexed manner, at least at the 
syllabic and phonemic timescales. From these hypotheses, we were the first to construct 
a computational implementation of Theta-Gamma CFC in auditory cortex using 
neuronal networks, in order to verify the advantages of such neural architecture and 
provide a set of useful and testable predictions for future experiments (Hyafil et al., 
2015). The important implications of our work are discussed later in this thesis. Let us 
now review a set of fundamental concepts regarding the interactions between distinct 
areas of the brain and the potential functions underpinning those mechanisms, since 
they will be important to introduce our work on frequency-specific communication 
channels (Fontolan et al., 2014). 
 

 
 

Figure 11. Speech waveform and its chunking by cortical rhythms. 

Syllabic (red) and phonemic (blue) components are both represented in the speech waveform.  
Cortical oscillations in the Theta and Gamma frequency bands respectively match the timescales of 
syllables and phonemes, hence constituting a potential mechanism to parse the speech signal into 
its constituents. 
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5 Information flows in sensory cortex 
 

In one of his gloomier moments Pascal said that all man’s unhappiness stemmed from a 
single cause, his inability to remain quietly in a single room. “Notre nature”, he wrote, 
“est dans le mouvement… La seule chose qui nous console de nos misères est le 
divertissement”. Diversion. Distraction. Fantasy. Change of fashion, food, love and 
landscape. We need them as the air we breathe. Without change our brains and bodies rot. 
The man who sits quietly in a shattered room is likely to be mad, tortured by 
hallucinations and introspection. 

Bruce Chatwin, Anatomy of Restlessness 
 

At the dawn of theoretical neuroscience, scientists used to think of the brain as a passive 
machine, a collection of sophisticated filters capable to extract and interpret the 
information coming from the surrounding world, with the primary aim of prolonging 
survival and ensuring abundant and healthy offspring. Although this vision has proven 
extremely useful to explain some of the animal and human behaviors and the 
corresponding brain responses, it does not appear to be the most parsimonious and 
flexible way of operating for a device whose target is to link the perception of sensations 
with actions (Friston, 2010). There is evidence that the brain anticipates future events 
such as upcoming sensory stimuli, and adapts its reactions accordingly (Bar, 2007). To 
use the words of Daniel Dennett: “A mind is fundamentally an anticipator, an expectation 
generator”3. Intuitively, being able to predict stimuli and contexts from the environment 
constitutes an invaluable advantage for survival: it allows for optimizing actions with 
respect to the complexity of the environment, anticipating dangerous situations and 
maximizing the responses to relevant, unexpected events. Hence, the brain needs to 
carefully balance and integrate together the information flowing from peripheral 
sensory systems to cognitive areas (bottom-up flow) and the predictions traveling from 
cognitive areas to sensory cortices (top-down flow). 

One of the most popular and interesting theories on prediction has been 
advanced by David Mumford about two decades ago (Mumford, 1992). The theory, that 
has been successively repurposed by other researchers (Rao and Ballard, 1999; Friston, 
2002), is called predictive coding and revolves around two principles: i) it allows to link 
cognitive perception with passive sensing, by inferring the most probable causes of 
incoming stimuli (as first proposed by Helmholtz4) and ii) it actively maintains a model 
of the world, based on previous experience and future expectations, that must be plastic 
enough to be constantly updated by new experiences (in healthy individuals). In this 
chapter we will review previous models of predictions, then introduce the predictive 
coding theory and highlight the role of oscillations in relation to top-down vs. bottom-
up communication. 

 
3 Dennet, D., 1996, Kinds of minds: toward an understanding of consciousness, Basic 

books. 
4  Helmholtz, H., 1860/1962, Handbuch der physiologischen optik (ed. J. P. C. 

Southall), vol. 3. New York: Dover. 
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5.1 The connectionist approach 
A connectionist model typically consists in a network of interconnected minimal 
processing units, often displaying binary values [0,1]. The units are interpreted as 
simplified neurons, mutually connected by adjustable weighted links (Amari, 1972). The 
output of such basic neuron is computed as some sort of weighted sum of its inputs, 
usually thresholded or modulated by a nonlinear function (e.g. a sigmoid). The value of 
the output after thresholding is called the state (or activation) of the unit, which, in turn, 
might constitute part of the weighted input to other units. Surprisingly, networks built 
out of these elementary units are able to capture a remarkable number of features of 
high order cognitive processes, such as memory (Hopfield, 1982), language (Norris, 
1994) and vision (Feldman, 1985). Although these artificial networks are generally 
employed to describe bottom-up processes, they have been also applied to try to 
understand and explain prediction or anticipation. To be able to form any kind of useful 
prediction, the brain must be able to learn from previous experience, which in the 
connectionist paradigm translates into allowing processed stimuli to actively modify the 
distribution of the weights to minimize the mismatch between the network prediction 
and the actual stimulus. Irrespective of the specific error minimization principle used in 
the different instances of connectionist models, learning in these network has to be 
supervised or semi-supervised. Learning in a supervised fashion means that an external 
source is needed to train the network, by knowing in advance the desired target output 
(i.e. by guiding the weights modifications towards the correct input-output associations 
using a subset of all input patterns). Unfortunately this approach has two main 
limitations in relation to predictions: first, these networks must know in advance many 
of the causes of incoming sensory input in order to be able to learn a set of appropriate 
input-output mappings; second, they often need a vast training corpus to reach 
reasonable performances, making them too slow or fragile to be useful to model 
predictive processes in the brain. 

5.2 Predictive coding 
To overcome the drawbacks of connectionist models David Mumford proposed a 
different approach based on what is known as the predictive coding model (Mumford, 
1992). In this framework, the error that is minimized is not that between the network 
output and the target pattern, but the one between the actual observed input and the 
prediction from the network. This way, in predictive coding, the network is able to learn 
the generating causes behind the observed sensory patterns (i.e. updates its internal 
model of the world) by i) extracting the statistical regularities of the inputs; ii) 
comparing the predictions formed on the basis of previous experiences with the 
upcoming input signal. To translate this scheme into a potential cortical 
implementation, Mumford assumed that the “abstract” information regarding the world 
causes was retained in some central brain area, which in turn sent the information about 
the most expected signal to some lower area (top-down flow). The local circuits within 
each area computed the difference between the sensory input and predictions coming 
from upper areas (the prediction-error) and transmitted this information back to upper 
stages (bottom-up flow), where the prediction signal is updated accordingly. In the 
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Mumford model not only the predictive step and the update step occur at the same 
time, in contrast to the connectionist approach where a training and a test period are 
needed, but the learning process is also completely unsupervised (Friston, 2002). After 
Mumford’s proposal, this approach has been used to successfully model extra-classical 
receptive fields in visual cortex (Rao and Ballard, 1999) and extended to a whole 
hierarchy of cortical stages, each one passing the predictive information to the next one 
in a top-down fashion, and getting back the prediction-error signal in a bottom-up 
fashion (Friston, 2005; Kiebel et al., 2008). Multiple studies have then found evidence for 
predictive coding during cortical processing of information, under paradigms as diverse 
as mismatch negativity (Wacongne et al., 2011; Winkler and Czigler, 2011), spoken word 
recognition (Gagnepain et al., 2012), priming (Recasens et al., 2014), visual adaptation to 
novel stimuli (Hosoya et al., 2005) and repetition suppression (Costa-Faidella et al., 
2011). We refer the interested reader to (Clark, 2013) for a comprehensive and updated 
review on the subject. 

Beyond the general idea of predictive coding, many implementations are being 
considered by researchers (Friston, 2003, 2008). A promising approach, partially 
supported by evidence from cortical connectivity studies (Markov and Kennedy, 2013), 
is that of Bayesian probabilistic inference and generative models (Dayan et al., 1995; 
Friston, 2002, 2003). A generative model is a way of reconstructing the sensory input 
from the representation of its causes that is stored in the network. In practice, a 
generative model performs the inverse of inferring the causes from sensory inputs: it 
generates a model of the observed sensory input starting from the most probable 
underlying cause. Consider as an example the shadow produced by an animal crossing 
the street under the lights of a car: to infer to which animal belongs the perceived 
shadow, a generative model would generate a copy of the shadow caused by the animal 
we encountered more often in our past experience. The predicted shadow is then 
compared to the observed shadow, and the corresponding prediction-error signal is 
produced, depending on whether the two patterns match or not. Cortical circuits might 
build similar predictions based on generative models and update the parameters of the 
model by means of Bayesian probabilistic inference (Friston, 2005; Bastos et al., 2012). 
Indeed, it is worth noting that a purely feedforward network cannot perform predictive 
coding: in fact backward connections from lower to upper stages are crucial for the 
update of the internal model (Friston, 2002).  

Bastos and collaborators also suggest a possible spatial scale within which the 
processes of predictive coding might be integrated: cortical macrocolumns (see Section 
4.2). These columns could be the fundamental units of cortical microcircuits for 
predictive coding: in fact, each column is computationally segregated from other 
columns belonging to the same brain area (i.e. is capable to accomplish the full 
computational duties assigned to its stage), but interacts with columns in other brain 
areas. In particular, although the physiological organization of cortical is all but simple, 
previous computational models (Mumford, 1992; Rao and Ballard, 1999; Bastos et al., 
2012) putatively assigned deep layers of the column to the computation of predictions, 
then transmitted via top-down pathways to lower areas. Similarly, cortical superficial 
layers are associated with bottom-up transmission of prediction-error, i.e. the difference 
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between the observed and the predicted input. Bastos and colleagues also suggest that 
neurons in deep layers should display lower powers at high frequencies, due to the 
longer window of integration needed to form predictions (Bastos et al., 2012). This could 
indeed explain the spectral differences observed across layers (see next Section), and, 
together with the mapping of cortical layers to communication mechanisms, suggests a 
strong link with cortical oscillations, as we shall see here below. 

5.3 Oscillations and information passing 
As we have seen in Section 3, brain rhythms are a consequence of the interplay among 
neurons, whose dynamics allows for the creation of transient synchronized assemblies. 
Different rhythms are created by distinct neuronal networks: not only their neurons 
have distinct electrical properties, but they are also located in different layers within the 
cortical sheet: Gamma oscillations were shown to be generated in superficial layers 
(II/III) of neocortex, while slower rhythms, like Beta (13-30 Hz), originate in deep layers 
(IV/V) (Roopun et al., 2008b; Wang, 2010; Buffalo et al., 2011; Cannon et al., 2014). In 
addition, several studies have demonstrated that the spectral cortical response to 
sensory inputs is strongly affected by top–down cognitive control, such as attention and 
predictions (Wang, 2010; Bosman et al., 2012). Among these studies, those on speech 
perception are particularly relevant, since frequency bands appear to particularly 
affected by top-down mechanisms during the listening of speech (Arnal and Giraud, 
2012; Ding and Simon, 2012; Gagnepain et al., 2012; Zion Golumbic et al., 2013; Arnal et 
al., 2014).  

These two facts, the cortical separation of rhythm generators and the evidence 
that alterations in the frequency spectrum seem to correlate with top-down cognitive 
tasks, suggest a potential fundamental role for oscillations as powerful communication 
channels to convey information across different brain areas (Buschman and Miller, 2007; 
Wang, 2010; Arnal and Giraud, 2012). On the one hand it is well established that 
Gamma oscillations are strongly related to sensory processing (Buzsáki and Wang, 
2012), even though the directionality of the flow has been established only recently 
(Bastos et al., 2014; Fontolan et al., 2014; van Kerkoerle et al., 2014). On the other hand, 
Beta oscillations, although classically associated with sensorimotor planning and 
execution, have been recently associated with top-down modulations and predictions in 
sensory cortices, thanks to longer conduction delays that could maintain synchrony over 
larger spatial scales and thus provide a long integration window, as needed to form 
predictions (Engel and Fries, 2010). According to this hypothesis, Beta could signal the 
maintenance of the current internal representation (the status quo) that is generated in 
high-level cortical areas. Consequently, Beta power would be suppressed in presence of 
a novel, engaging input capable of modifying the status quo, as it is actually observed 
experimentally (see Engel and Fries, 2010). An interesting study by Arnal and 
collaborators (Arnal et al., 2011), which has investigated the audiovisual integration of 
speech with MEG recordings, highlighted the significant alterations in the frequency 
spectrum provoked by mismatching audio and visual inputs. Essentially, the authors 
observed stronger cross-frequency coupling between Beta and Gamma rhythms in the 
superior temporal sulcus, together with enhanced Gamma power in auditory and visual 
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cortex, when the visual input was incongruent to the auditory input. Hence, higher 
Gamma amplitude could underlie the computation of prediction-error, whereas higher 
Beta-Gamma PAC might signal a change in the status quo and the subsequent 
construction of a “new” prediction, that would solve the incongruity in favor of either 
the auditory or the visual sensory channels (Arnal and Giraud, 2012). 

5.4 Summary of hypotheses 
Although their functional role has not been elucidated yet, brain oscillations appear to 
be ubiquitous in the mammalian brain. Gamma oscillations (30-100 Hz) in neocortex 
have been associated with the processing of sensory inputs, while slower rhythms like 
Theta (3-8 Hz) have been related to various aspects of cognitive processes like working 
memory or the modulation of sensory and motor signals. Experimental evidence 
showed that oscillations at separate frequency bands are nested, i.e. they are linked 
through phase-amplitude coupling, in many sensory areas. This is particularly true in 
the auditory cortex during speech perception. In fact, to capture the many different 
relevant components of speech (syllables, phonemes), the brain must be able to parse 
the speech signal over these different timescales at the same time. A network of nested 
theta-gamma rhythms could accomplish this task, given the matching of theta and 
gamma frequency with syllabic and phonemic time-scale respectively (Giraud and 
Poeppel, 2012). These hypotheses were tested in Articles 1 (Hyafil et al., 2015) and 2 
(Fontolan et al., 2013). 

In addition to the processing of bottom-up sensory information, the brain is also 
trying to predict and anticipate future events, according to a recent theory of brain 
functioning called predictive coding. In fact, partial evidence shows that the central neural 
system minimizes its reaction to environmental stimuli by predicting likely events, and 
inferring their most probable causes (Friston, 2005). This mechanism ensures that 
reactions are appropriate, i.e. maximal for unexpected events and minimal to frequent 
ones. Functionally, predictive coding is a possible realization of the anticipatory 
function of the brain. Practically, it states that the difference between top-down 
predictions and bottom-up sensory information is assessed at each processing stage (i.e. 
brain area), possibly within each single cortical column scale, so that only the error 
signal (i.e. the magnitude of the mismatch) is further propagated up the cortical 
hierarchy. It has been then conjectured that top-down and bottom-up information could 
be transmitted throughout the sensory hierarchy via distinct frequency channels: in the 
Beta and Gamma band, respectively (Arnal and Giraud, 2012). In Article 3 (Fontolan et 
al., 2014) we tested this theory using a set of iEEG recordings in human subjects. 

6 Description of the articles 

6.1 Article 1: Speech encoding by coupled cortical theta and gamma 
oscillations 

 
Alexandre Hyafil, Lorenzo Fontolan, Claire Kabdebon, Boris Gutkin and Anne-Lise 
Giraud  
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eLife, in press 
 
Contribution to the article: Conception and design of the model; Analysis and 
interpretation of data and results; Drafted and revised the manuscript. 

6.1.1 Summary of results 
In this study we created a neural network model of the microcircuits that, putatively, 
generate Theta and Gamma oscillations inside auditory cortex. Each rhythm arises from 
a network of mutually interconnected excitatory and inhibitory quadratic integrate-and-
fire neurons (PING). The excitatory neuronal population, which simulates pyramidal 
cortical neurons, starts firing upon receiving the spectrogram of a spoken sentence, 
processed by a state-of-the-art cochlear model. Through a number of excitatory 
synapses, spikes from pyramidal neurons activate the population of inhibitory 
interneurons. Inhibition then reaches pyramidal neurons, creating a refractory period 
during which inhibition prevents excitatory neurons from reaching the spiking 
threshold. The two PING-like networks are then connected to reproduce phase-
amplitude coupling. We tested the model capability to chunk and extract speech 
constituents using many different measures on the standard Texas Instruments & 
Massachusetts Institute of Technology (TIMIT) speech corpus. We showed that the 
Theta-Gamma network performs as well as the best offline methods when tested over 
the tracking of syllabic boundaries, and that syllabic constituent can be recognized and 
classified using spiking activity of Gamma excitatory neurons. Crucially, the Theta-
Gamma model performed better than control models where i) the connection between 
the two rhythms was cut and ii) when the Theta network receives no speech input. In 
Article 2 we focused on the synchronization properties of network analogous to the one 
we used in Article 1, employing the most advanced mathematical tools to analyze the 
different dynamical regimes arising in the parameter space. 

6.2 Article 2: Analytical Insights on Theta-Gamma Coupled Neural 
Oscillators 

 
Lorenzo Fontolan, Maciej Krupa, Alexandre Hyafil and Boris Gutkin 
 
Journal of Mathematical Neuroscience (2013) 3:16 
 
Contribution to the article: Conception and design of the model; Analysis and 
interpretation of data and results; Drafted and revised the manuscript. 

6.2.1 Summary of results 
We considered here a simple mathematical model of a fast spiking network (i.e. firing in 
the Gamma frequency band, 30 - 100 Hz) modulated by a slow periodic input (i.e. 
operating in the Delta-to-Theta frequency range, 1-8 Hz). In particular, we connected a 
single Excitatory Gamma (GE) neuron, modeled as a QIF, to an excitatory sinusoidal 
input, whose natural frequency lies in the Theta band. The GE neuron also participates 
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in a Pyramidal Interneuron Network Gamma (PING) rhythm, although in our case the 
inhibitory neuron is instantaneously enslaved to the excitatory cell, meaning that every 
excitatory spike immediately prompts a virtually simultaneous inhibitory spike. We 
found that that this network can work in two distinct regimes (which we have named 
excitable and oscillatory), which respond in rather different ways to the Theta input. In 
the excitable case the GE neuron remains silent at troughs of Theta rhythm and then 
starts firing almost immediately when Theta input has reached a certain threshold. On 
the contrary, in the oscillator case the GE cell always fires, but its frequency of spikes is 
modulated by the phase of Theta. For both regimes, we provided analytical and 
numerical solutions to compute the time-to-first spike at the beginning of a Theta period 
and the average number of Gamma spikes inside one Theta cycle. 

6.3 Article 3: The contribution of frequency-specific activity to hierarchical 
information processing in the human auditory cortex 

 
Lorenzo Fontolan*, Benjamin Morillon*, Catherine Liegeois-Chauvel, Anne-Lise Giraud 
 
*equal contributions 
 
Nature Communications (2014) 5:4694 
 
Contribution to the article: Analysis and interpretation of data and results; Drafted and 
revised the manuscript. 
 

6.3.1 Summary of results 
With the aim of exploring the frequency-specific content of information passing in 
auditory cortex, we investigated the directional influence in the frequency domain 
between A1 and associative auditory cortex (AAC) in epileptic patients that were 
recorded intracranially while they were listening to speech. We were able to identify the 
frequency channels of top-down and bottom-up communications during speech 
perception, being, respectively, Beta and Gamma bands, using circular-to-linear 
correlation to measure phase-amplitude coupling and Granger causality to reveal causal 
patterns between A1 and AAC at a specific frequency, the same for both areas. Lastly, 
we found that T-D and B-U causal patterns fluctuate over time, i.e. windows of 
prevalent T-D influence alternate with windows of B-U influence at a rate of about 2-3 
Hz. This suggests that multiplexing does not occur simultaneously but in temporally 
distinct segments. 

7 Discussion 

7.1 Foreword 
Brain oscillations have been recorded in thousands of experiments in humans and in 
more than a dozen animal models, throughout many different brain states and 
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behavioral tasks. Recent efforts were aimed at revealing the potential role of oscillations 
in functions as diverse as the mapping of spatial locations (Buzsáki and Draguhn, 2004), 
facilitation of input selection (Hutcheon and Yarom, 2000; Akam and Kullmann, 2010), 
coordination of distant brain areas (Fries, 2005; Womelsdorf et al., 2007), binding of 
perceptual features (Engel et al., 2001), formation and persistence of memories (Jensen 
and Lisman, 2005; Axmacher et al., 2006), dynamics of synaptic plasticity (Bukalo et al., 
2013), or the execution of sensory-motor functions (Schoffelen et al., 2005). Still, 
conclusive evidence on whether oscillations in cerebral cortex a mere epiphenomenon or 
a useful computational strategy are that allows the brain to better perform some specific 
classes of tasks is currently missing. In order to unravel the “cortical oscillations 
mystery” we must be able to answer a number of compelling questions that arose in 
past years. The work of this thesis is an attempt to find the answer to some of those 
questions. With our computational and analytical work we tackled two questions: i) 
linking oscillations to a specific computational function (in our case in the auditory 
cortex) and ii) demonstrating that a hierarchy of oscillations is capable of enhancing the 
encoded stimulus information during speech processing, as compared to control 
conditions. We discuss the implications of this first part of our work in Section 7.2. On 
the other hand, the analysis of human intracranial recordings allowed us to establish the 
frequency content of the information flow within the auditory hierarchy and to uncover 
its temporal dynamics. The consequences of our experimental results are examined in 
Section 7.3. 

7.2 Modeling speech processing in auditory cortex 
Speech signal is an exceptionally attractive sensory stimulus to neuroscientists, given its 
rich spectrotemporal contents where features are encoded at several distinct timescales. 
Even more, speech is particularly suited for testing the contribution of brain oscillations 
in sensory perception, thanks to the quasi-periodic structure of its constituents. 
Nevertheless, speech perception is all but a simple matter: there seems to be no easy 
mapping between the continuous acoustic waveform and the perceived linguistic units 
such as abstract phonological representations, which have been found to be represented 
and categorized in the human brain (Mesgarani et al., 2014). Despite this complexity, the 
fact that there exist very few neural models of speech perception remains undoubtedly 
striking. On one side, a number of psycholinguistic and cognitive models of speech have 
been proposed. Among the first influential models it is worth mentioning the motor 
theory, advanced by Alvin Liberman and collaborators (Liberman et al., 1967; Liberman 
and Mattingly, 1985), that linked perceived phonemes to the articulatory movements of 
the vocal tract. The motor theory had the merit of uncovering the strong mapping 
between phonemes and the underlying speaker’s gestures. However, its initial claim 
that speech production and perception share a unified and innate representation has 
been refuted by subsequent findings, beside the various perceptual effects that the 
model cannot account for. The attention of modelers then shifted to the apparent 
acoustic invariance of speech, in the attempt to find a set of invariant spectral properties 
that could lead to categorization of phonemes. Two interesting connectionist models 
attempted this approach: TRACE (McClelland and Elman, 1986) and Shortlist (Norris, 
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1994), which reached fairly good performances in recognizing words. Both these models 
are essentially based on multilayer neural networks, where the bottom layer encodes a 
number of features that are believed to be important for phonemic categorization, while 
nodes in the two upper layers correspond to phonemes and words, respectively. The 
main limitation of these models lies in the fact that the tuning of neural units to the 
phonemic set has to be imposed artificially, since brain recordings and behavioral 
results do not seem to suggest that phonemic spectral features can uniquely determine 
the classification of phonemes (Poeppel and Monahan, 2008). Although still highly 
debated, the key turning point came from results on how the brain encodes the temporal 
modulations of speech waveforms (Greenberg and Ainsworth, 2006). In fact, the 
fundamental sources of acoustic variability in the waveform all involve some kind of 
temporal transformation: i) variability in spectral modulations, ii) variability in the 
duration, iii) stretching or compression of acoustic subparts within speech constituents. 
Notably, brain oscillations have the ability to quickly adapt to temporal changes, a claim 
that is supported by the experimental evidence we reviewed in Sections 4.4 and 4.5. 
While there is now a relatively large corpus of experimental evidences linking speech 
and oscillations, only the TEMPO model of Ghitza and colleagues (Ghitza and 
Greenberg, 2009; Shamir et al., 2009) has claimed a role for brain oscillations in the 
processing of speech. Our paper (Hyafil et al., 2015) is the first to propose a 
biophysically plausible, although much simplified, cortical circuit, making use of 
realistic neuronal networks to generate the rhythmic patterns observed in auditory 
cortex during speech perception. Concerning the fast rhythm, we implemented a set of 
biophysical parameters and connectivity structure, based on the PING model, that 
match the experimental values of Gamma rhythm in sensory cortices, (Cardin et al., 
2009; Vierling-Claassen and Cardin, 2010), in particular in the auditory cortex (Nourski 
et al., 2009). It is less clear how slow frequency oscillations such as Theta are generated 
in cortical microcircuits, albeit having been extensively recorded in human auditory 
cortex both intracranially and from the scalp (Ahissar et al., 2001; Luo and Poeppel, 
2007; Morillon et al., 2012). Hence, we used an implementation analogous to that we had 
used for Gamma oscillations, based on excitation followed by long decaying inhibition 
(lasting about 5 times longer than inhibition in the standard PING), which we called 
PINTH. We know in fact that there exist cells whose inhibitory decay constants are 
comparable to the value we used in the model, such as for example Martinotti cells, 
which are found in the rat’s neocortex (Silberberg and Markram, 2007b). Obviously, the 
PINTH architecture has not yet been verified experimentally, but we believe that part of 
the value of a computational model lies in the possibility to offer a set of concrete 
predictions that can then be corroborated or disproved. In this particular case, our 
prediction would be that Theta rhythm arises from an excitatory-inhibitory loop similar 
to that of the PING. In addition, our low frequency circuit is not expected to increase 
Theta band power but to reset its phase when in presence of a steep rise in the speech 
waveform’s envelope, as it has been shown in various human studies (Luo and Poeppel, 
2007; Gross et al., 2013). The two rhythms received rather different inputs: Theta 
neurons were fed with the broad spectrum in order to follow the slow global 
fluctuations in power; each Gamma neuron, instead, was connected to a different 
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cochlear channel to reflect the variety of spectrotemporal filters represented in the 
auditory cortex. 
 A second critical aspect of our model is Theta-Gamma PAC, which is realized 
through a bundle of synaptic connections between the excitatory population belonging 
to the PINTH (TE) and the one belonging to the PING circuit (GE). Since we assume, in 
our model, that GE neurons are the readout cells from which the relevant information 
regarding speech constituents can be decoded, their firing pattern becomes particularly 
important to examine. Intuitively, the spiking activity of these neurons should be more 
intense at the beginning of the syllable, so that it can provide maximal information and 
activate the appropriate predictions to anticipate subsequent phonemes, syllables and 
even words (Schroeder and Lakatos, 2009; Giraud and Poeppel, 2012). Indeed, our 
architecture nicely reproduces this effect, as a consequence of the fast Theta phase reset 
and the ensuing strong input reaching GE cells. It is worth noting a crucial feature of 
our model with respect to other previous computational works: with our 
implementation, the detection of the syllabic onset comes for free from the biophysical 
structure of our network, while other speech recognition models relied on either an ad 
hoc neural code that has never been observed experimentally (Gütig and Sompolinsky, 
2009) or an external, artificial, onset signal (Hopfield, 2004; Shamir et al., 2009), to which 
the brain cannot have access. Theta neurons also act as a sort of internal clock for other 
neuronal populations, signaling the onset of speech stimuli. Neurons with these 
properties have been found in A1 of monkeys (Brasselet et al., 2012; Panzeri et al., 2014).  
 Although the issue of whether Gamma rhythm can be used to process 
information or not is still debated, we think that this does not affect our model. 
Criticism over Gamma regards, in fact, the scarce contribution of Gamma to the power 
spectrum (about 10%), incompatible conduction delays that would make difficult to 
define a proper phase, and the strong dependence of Gamma activity on the presence of 
a stimulus (Ray and Maunsell, 2014). Altogether, these arguments cast into question 
whether Gamma can be used for coding or to process sensory information. However, for 
our model to work properly, Gamma does not necessarily have to be a rhythm stricto 
sensu; conversely, our Gamma rhythm is a rather sparse and weak rhythm, resulting 
from noisy excitatory-inhibitory feedback interactions, like those of the PING. As a 
consequence, individual GE cells may skip one or more Gamma cycle, producing a 
rather broad Gamma peak and making it hard to reliably measure a global phase. The 
sparseness of the rhythm is essential to maintain a balance between synchronization, 
which reduces the entropy of the spike trains and diminishes the information carried by 
GE spikes (Eyherabide and Samengo, 2013), and the preservation of a somewhat spread 
temporal distribution of GE spikes, which is essential to efficiently encode and classify 
different stimuli (Strong et al., 1998). To this end, we measured the mutual information 
(MI) between the stimuli and three neural codes: i) the spike count code, which simply 
computes the sum of all spikes within a specific time window; ii) the spike pattern code, 
which also considers the temporal order of spikes within that window; iii) the phase 
code, attributing an additional tag to each spike according the phase of Theta oscillation 
at which the spike occurs. Our MI plots are surprisingly similar to those obtained from 
in vivo recordings of monkey auditory cortex (Kayser et al., 2009), suggesting that our 
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model correctly grasps, at least qualitatively, how information is encoded in that brain 
area. 
 We then established the model’s performance to decode and classify two classes 
of stimuli: simple sawtooth waves, mimicking the syllabic shapes (Shamir et al., 2009), 
and syllables within English sentences, randomly selected from the TIMIT corpus (J. S. 
Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, 1993). The classifier was based on a 
clustering method (see Article 1), the readout neurons were, as mentioned above, the GE 
cells, and the neural codes we tested were the same we used to compute MI. The 
percentage of correctly decoded stimuli was very good for both sawtooth waves (60% 
using the best code, i.e. spike patterns; 10% chance level) and for real syllables (58%). As 
expected, it dropped dramatically in the two control conditions (i.e. in the absence of a 
Theta-Gamma connection or in presence of a Theta module disconnected from the 
input). We performed an additional classification analysis where, instead of aligning GE 
firing activity with the actual time-course of the sawtooth stimulus (external time 
reference), we aligned it with the onset of the theta oscillations produced by the network 
(internal time reference), which would correspond to the perceived time-course (see 
Section 4). This way we looked at the ability of the system to use an endogenous clue, 
i.e. the onset of a Theta burst, as an internal clock. The performance degraded to about 
42% for sawtooth waves, remaining however much above chance level. 

 Finally, we tested the model’s ability to process time-compressed speech, as one 
of the significant advantages of using oscillations is the resilience of the phase-resetting 
mechanism to time-compression, at least to a certain degree. Behavioral data indicate 
that speech can be uniformly squeezed up to 3 times its standard duration before 
intelligibility (the degree to which speech can be understood) dramatically drops 
(Ghitza and Greenberg, 2009). Similarly, the preferential window provided by Theta 
oscillations can be aligned to the syllabic contours only within a certain compression 
range: the performance of our model was still above statistical significance up to a 
compression factor of 3, but it then plunged to chance level for higher compression 
factors. However, the difference in the classification performance of syllables was quite 
big between standard uncompressed speech and compression rates of 2 or 3. Our 
network is in fact purely bottom-up, therefore it lacks any predictive/anticipatory top-
down effect that we know is a very important factor in speech processing, and which 
would probably explain the performance gap between standard and compressed 
intelligible speech. 

We believe that more computational models are needed in neuroscience, and 
especially in audition where neuronal networks were only recently applied to model 
neural processes. Our model is an attempt to formulate a set of basic principles 
underpinning the chunking of speech and the extraction of its constituents in early 
auditory areas. We do not claim the model to be exceptionally close to the actual 
biophysical architecture of auditory cortex. Rather, although inspired by presently 
available biophysical evidence, we aimed at developing a reasonably simple network 
whose performance could be tested under the most important manipulations, and 
which could be used for making straightforward predictions. Nevertheless, one of the 
potential dangers of computational models comes from overfitting and fine tuning of 
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simulations: any behavior can be reconstructed and reproduced with a sufficiently high 
number of parameter, whereas the underlying computational architecture most likely 
has nothing to do with the real architecture, resulting in very poor predictive 
performances. This particular concern was the main motivation for our purely 
theoretical investigation of nested oscillators, which lead to the publication of Article 2. 
The analytical and numerical results we reported in Article 2 (Fontolan et al., 2013) are 
important in order to understand the underpinning laws regulating the interaction 
between fast and slow neural oscillators. The theoretical discovery of two regimes with 
rather different synchronization properties allows theorists to make predictions 
regarding the dynamics of networks observed in vivo based on the dynamics of their 
elements. Evidence that these two coupling regimes might have been be recorded in the 
hippocampus has appeared recently (Cabral et al., 2014). 

7.3 Predictions and perception 
Throughout the twentieth century, the majority of neuroscientists looked at the brain as 
a collection of passive filters, whose main job consisted in eliminating worthless 
information from external inputs. In the last twenty years, however, an alternative 
vision of perception has increasingly gained popularity, which implies that the brain 
actively maintains an internal model of reality, formed on the basis of previous 
experience and used to predict future occurrences (see Section 5). One of the most 
famous and influential implementations of this view is predictive coding, as seen in 
Section 5.2. In this framework, perception is formed as the interaction between stimulus-
driven, bottom-up, signals and top-down expectations, throughout the various stages of 
the sensory hierarchy (Rao and Ballard, 1999). Many recent experiments have indicated 
that oscillations are implicated in the formation and transmission of predictions, due to 
their dynamic properties that make them particularly attractive to explain T-D and B-U 
interactions. 
 Our work was motivated by three major inquiries: i) investigate the frequency 
channels employed in the abovementioned scheme by applying a directional measure, 
ii) unravel the presence of cross-frequency coupling, iii) search for any temporal pattern 
of modulation in the directional influence. With these questions in mind, we processed 
and analyzed a set of rare and thus precious intracortical human EEG data from 
epileptic patients, obtained while they were listening to uttered sentences. The 
stereotactic electrodes were place along the auditory hierarchy, hence giving us the 
opportunity to investigate the relationship between an early sensory area such as A1 
and a more associative, higher order area such as AAC.  
 To answer the first of our inquiries, and assess the causal influences between A1 
and AAC as a function of frequency, we used a nonparametric version of Granger 
causality (Dhamala et al., 2008). Normally, GC is measured by first modeling the EEG 
time series using a multivariate autoregressive process, but this method does elicit 
several potential issues that would undermine the trustworthiness of the results 
(Dhamala et al., 2008; Barnett and Seth, 2011). Instead, nonparametric GC leans on a 
different estimation method that is more robust and reliable (Ding et al., 2008). Our 
method was relatively new in neuroscience, since very few articles had reported 
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frequency-specific causal influence when we started analyzing this dataset, e.g. from 
Steven Bressler’s lab to reveal Beta oscillations in sensorimotor cortex (Brovelli et al., 
2004), and a few others appeared after we began our endeavor (Bosman et al., 2012; van 
Kerkoerle et al., 2014). Applied to our dataset, GC revealed a clear causal pattern 
between A1 and AAC: low frequencies, from Delta to high Beta, conveyed mainly Top-
Down information from AAC to A1; conversely, high frequencies from low to high 
Gamma were associated with Bottom-Up flow going from A1 to AAC (Figure 3 in 
Fontolan et al., 2014). For the first time, we were able to link frequency specific channels 
to directional information flow in the human auditory hierarchy, partially confirming 
the proposed scheme of Gamma associated with Bottom-Up and Beta with Top-Down, 
presented in Sections 4 and 5. Our GC results indicate that a wider low frequency range, 
Delta-to-Beta, is involved in T-D flow, that would potentially complicate the hypotheses 
illustrated earlier in this thesis (Engel and Fries, 2010). 
 The frequency dissociation of GC causal peaks also translated into a number of 
cross-frequency coupling peaks between the phase of low frequency oscillation from 
one area and the amplitude of high frequency oscillations from the other area. In 
particular, we observed two clear PAC patterns in the left hemisphere of both patients 
(Figure 4 in Fontolan et al., 2014): the phase of low Delta frequencies (<3 Hz) of A1 
coupled to the amplitude of Gamma frequencies of AAC, while the phase of Delta-to-
Beta (~3–15 Hz) frequencies in AAC was coupled to the amplitude of Gamma 
frequencies in A1.  
 Power spectra, GC and PAC showed that both intrinsic and extrinsic activity 
differed in the two hemispheres. Both A1 and AAC in the left auditory pathway 
(historically associated with language) displayed strong modulations in the time-
frequency spectrum, at both high and low frequencies. Right A1 exhibited a pattern of 
activity similar to left A1, whereas right AAC appears less engaged in stimulus-driven 
activity. The GC plot were also distinct: simple in the right hemisphere, more complex 
in the left hemisphere, where T-D and B-U peaks alternated in frequency at the lower 
edge of the spectrum. This might reflect the greater involvement of the left hemisphere 
in handling speech, as it was confirmed by stimulus/brain correlations (Figure 2 in 
Fontolan et al., 2014) and previous analyses on the same dataset (Morillon et al., 2012). 
The partial overlap between GC peaks and PAC clusters ensured that the modulations 
of Gamma frequencies by the phase of low frequency bands were actually controlled by 
distant areas. The fact that a number of significant GC peaks did not find any 
correspondence in PAC clusters might have different explanations: i) it could reflect the 
absence of cross-frequency coupling at those peaks, ii) it could be due to the lower 
sensitivity of the circular-to-linear correlation method, or iii) the peaks could be 
connected through other kinds of coupling mechanisms (e.g. phase-phase).  
 Intriguingly, we also found that the pattern of causal influence was modulated 
in time: a fast Fourier transform (FFT), done after subtracting B-U Granger causality 
from T-D Granger causality, revealed that the causal influence swaps in time between T-
D and B-U flows, at a rate of about 1-3 Hz and across several frequencies (Figure 5 in 
Fontolan et al., 2014). Interestingly, the temporal scale at which T-D and B-U causal 
dominance alternates in time, every ~300-1000 ms, roughly matches with the 
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syllables/words rate in normal speech, potentially suggesting a timescale for the 
prediction of speech constituents. On the other hand, these slow modulations might be 
driven by intrinsic slow oscillations such as Delta or Alpha, which have been already 
linked to sensory perception of external stimuli (Ng et al., 2012; Arnal et al., 2014). A 
cautionary note should be taken when looking at the modulatory timescales we 
measured, since GC fluctuations might be rather irregular and thus only partially 
detectable using a method as simple as FFT. 
 Overall, the patterns we uncovered are compatible with the multiplexing scheme 
in the frequency domain: in this respect, ascending information would travel using a 
high-frequency channel (Gamma) while descending information would be handled by 
low frequency channels (Delta-to-Beta). According to our results, multiplexing does not 
appear to be continuous, instead it seems that the two channels dominate during 
alternating episodes, lasting about 300-1000 ms. The partial discretization of 
multiplexing in time could be of use in the context of predictive coding, as it has been 
showed that temporal predictive codes approximately matches the average syllabic 
duration (Gagnepain et al., 2012). Where and how these two channels are integrated 
remains to be investigated, although we know that predictive coding models implicate 
that, at each stage, T-D predictive signals must be formed upon the accumulation of a 
minimal amount of B-U information.  
 There are of course a number of limitations in our methodology: first of all, the 
low number of subjects restricts the statistical power of our study. However, besides the 
fact that human intracortical recordings are rare and valued, we employed the most 
advanced statistical techniques and opted for rather conservative thresholds to ensure 
the statistical validity of our analyses. A second limitation comes from the linear 
framework of GC: although we have eliminated many of the flaws on MVAR methods, 
Granger causality can only grasp linear relationships while other methods, such as 
DCM, are sensitive to nonlinear features. Nonetheless, we were mainly interested in 
time-varying GC, and by estimating GC directly from the Wavelet spectrum we reduced 
the linearity requirement to within the Wavelet transform window. In addition, 
nonparametric GC is model-free, while DCM is strongly based on choosing a particular 
architecture a priori. GC can be linked to transfer entropy, another interesting measure 
that is based on information theory, when the variables are Gaussian (Barnett et al., 
2009). Transfer entropy is nonlinear, but has some severe practical issues, for instance 
the estimation of the state-space (Bressler and Seth, 2010). We hence preferred GC in this 
particular case, our results being also corroborated by recent works in nonhuman 
primates (Bastos et al., 2014; van Kerkoerle et al., 2014). In these two papers, researchers 
investigated information passing in the visual cortex of rhesus monkeys using GC, 
finding a frequency separation between T-D and B-U pathways similar to what we 
found. The converging evidence clearly supports the hypothesis that frequency-domain 
multiplexing might be a universal strategy for information passing in sensory 
hierarchies, at least in primates. 
 Critics of predictive coding point out that, if the theory were to be true, we 
should observe much less brain activity than what we usually measure, since the B-U 
channel would only be activated when an unexpected input is received. Indeed, we do 
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find this reduced activity when the subject is performing specific tasks, revealing effects 
such as mismatch negativity (MMN) or repetition suppression. Overall, however, the 
activity of the brain appears to be high enough to be a challenge for predictive coding 
theory, at least in its original form. As a partial answer, a theoretical implementation 
proposed in a recent model of visual cortex (Spratling, 2008) demonstrated that the 
predictive coding framework can also model cognitive functions, like attention, that 
preferentially enhance, rather than inhibit, cortical activity. Still, the theory of predictive 
coding requires a high degree of computational complexity to be implemented 
efficiently: further computational and experimental insights will be needed to 
definitively link predictive coding to cortical operations.  

8 Conclusions and future directions 
 

We have seen that an effective combination of experiments and models has so far 
uncovered some of the powerful advantages of brain rhythms as an information 
processing tool. Direct examples can be picked from this thesis: nested rhythms in early 
auditory processing are important for the discretization of speech signal (Article 1 and 
2), while distinct frequency bands make up the channels in the multiplexed 
transmission of information across auditory cortex (Article 3). 

This doctoral dissertation aimed at elucidating the role of oscillations in two 
different, although related, processes: i) we have developed a computational model 
simulating the parsing of speech signal and the extraction of its constituents; ii) we have 
analyzed an exceptional set of human intracortical data to study the frequency channels 
responsible for information passing across the auditory hierarchy. In both cases we have 
demonstrated an active role for oscillations, by testing the performance of our nested-
rhythms model in classifying speech chunks and by establishing the directional 
influences and the nonlinear couplings between A1 and AAC as a function of recorded 
frequency.  

This work is part of a larger effort, involving several researchers, to get brain 
rhythms beyond simple correlations and prove their crucial role in brain functions. 
Many experimental works are providing convergent evidence that oscillations 
characterize many high- and low-level processes in the brain. Nevertheless, it remains 
very hard to univocally demonstrate that oscillations are causing a given perception or 
behavior, at least until it will become possible to falsify this theory in the sense of 
Popper. Recently, the optogenetics breakthrough has revolutionized the brain imaging 
techniques in mice, allowing for the online, selective control of neuronal firing. The 
ability to activate or inactivate a particular class of neurons is of capital importance, in 
order to test the correspondence between behavior and brain waves. Indeed, if we 
could, for example, reset the phase of a PING rhythm by simultaneously stimulating 
several fast-spiking interneurons: we could then examine the animal behavior and 
prove (or disprove) the causal role of oscillations. Optogenetics tools recently started to 
be employed to manipulate brain rhythms in rodents, in order to investigate Theta-
Gamma coupling in the hippocampus (Vandecasteele et al., 2014). Researchers can now 
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begin to answer the question of whether or not oscillations in the rodent neocortex have 
the same significance as in the primate neocortex. 

Complementarily to experimental advances, I believe that neuroscience needs 
theoretical models, especially in order to be able to answer the question of the functional 
significance of oscillations. Even in the absence of compelling experimental proofs, it is 
very important, in my opinion, to discuss and model the computational contribution of 
oscillations to the coding scheme used in the brain. The main goal would be to explore 
the advantages of periodic over asynchronous neuronal firing, since it is well known 
that high correlations reduce the capacity of the network to process information but, at 
the same time, bringing the spikes together in time can increase the redundancy of the 
representation and, consequently, the noise robustness of the network. Future 
theoretical studies should address some of the core problems that, in my opinion, are far 
from being solved. First of all, whether is it computationally worth to spend several 
cortical neurons to produce a highly correlated, and thus less informative, spike pattern 
that gives rise to low frequency oscillations. To this end, it would be of great interest to 
examine, experimentally, if neurons that participate in generating cortical rhythms are 
selective to any of the stimulus features. A further interesting study should focus on the 
relationship between three classes of models that, until now, have not been connected: 
Bayesian models of probabilistic inference, mechanistic models of brain oscillations and 
models of predictive coding. Bringing together these three frameworks would constitute 
a critical advancement in understanding the basic principles of neural computation. 
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9 Appendices 
 

A. Circular-to-linear correlation 
 

Circular-to-linear correlation is a simple measure to assess correlations between a phase 
(circular) variable 𝛼𝛼 and an amplitude (linear) variable x (Berens, 2009). The trick to 
compute circular-to-linear correlations consists in calculating the correlations between x 
and each of the two projections of the angular variable (sin𝛼𝛼 , cos𝛼𝛼) separately. From 
the Pearson correlation coefficient, computed for two linear variables 𝑥𝑥 and 𝑦𝑦: 

 𝑐𝑐(𝑥𝑥,𝑦𝑦) =
cov(𝑥𝑥,𝑦𝑦)

var(𝑥𝑥) var(𝑦𝑦)
 , (A.1) 

we define 
 𝑟𝑟𝑐𝑐𝑥𝑥 = 𝑐𝑐(cos𝛼𝛼 ,𝑦𝑦),  𝑟𝑟𝐺𝐺𝑥𝑥 = 𝑐𝑐(sin𝛼𝛼 ,𝑦𝑦),  𝑟𝑟𝑐𝑐𝐺𝐺 = 𝑐𝑐(sin𝛼𝛼 , cos𝛼𝛼). (A.2) 

The formula for circular-to-linear coefficient simply reads: 

 𝜌𝜌𝑐𝑐𝑐𝑐 = �
𝑟𝑟𝑐𝑐𝑥𝑥2 + 𝑟𝑟𝐺𝐺𝑥𝑥2 − 2𝑟𝑟𝑐𝑐𝑥𝑥𝑟𝑟𝐺𝐺𝑥𝑥𝑟𝑟𝑐𝑐𝐺𝐺

1 − 𝑟𝑟𝑐𝑐𝐺𝐺2
 . (A.3) 

 
 

B. Single neuron models 
 

B.1. Integrate-and-fire neuron and the canonical model 
Consider the simple circuit depicted in  

Figure 4: the driving current 𝐼𝐼(𝑡𝑡) passes through a resistor and a capacitance disposed in 
parallel, as in the following equation: 

 𝐼𝐼(𝑡𝑡) =
𝑉𝑉(𝑡𝑡)
𝑅𝑅

+ 𝐺𝐺
𝑑𝑑𝑉𝑉(𝑡𝑡)
𝑑𝑑𝑡𝑡

 . (B.4) 

Introducing the membrane time constant 𝜏𝜏𝑚𝑚 = 𝑅𝑅𝐺𝐺 , the previous equation might be 
rewritten as 

 𝜏𝜏𝑚𝑚  
𝑑𝑑𝑉𝑉(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝑉𝑉(𝑡𝑡) + 𝑅𝑅 𝐼𝐼(𝑡𝑡) . (B.5) 

As soon as the voltage reaches its threshold value 𝑉𝑉𝑡𝑡ℎ, the neuron produces a spike and 
the potential is reset to zero. Although mathematically easy-to-handle, the linear version 
of the integrate-and-fire neuron (LIF) is overly unrealistic even to simulate spike 
generation, thus Ermentrout and Kopell introduced a variant (Ermentrout and Kopell, 
1986) by adding a voltage-dependent nonlinear (quadratic or exponential) term that 
better approximates the fast activation of sodium channels: 

 𝜏𝜏𝑚𝑚  
𝑑𝑑𝑉𝑉(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑉𝑉) + 𝑅𝑅 𝐼𝐼(𝑡𝑡) , (B.6) 

Where 𝑓𝑓(𝑉𝑉) is any nonlinear function of 𝑉𝑉. The quadratic (𝑓𝑓(𝑉𝑉) = 𝑉𝑉2) instance of the 
model (quadratic integrate-and-fire neuron, QIF) has proven very useful in network 
simulations and modeling studies, being both relatively realistic and mathematically 
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tractable. Although it does not capture well the subthreshold dynamics, the QIF does a 
much better job than the LIF in simulating the production of a spike. Also, it does not 
require any ad hoc threshold since for any positive value of 𝐼𝐼 , the voltage goes to 
infinity in a finite time. Hence the reset condition becomes 

 𝑉𝑉(𝑡𝑡∗ − 0) = ∞, 𝑉𝑉(𝑡𝑡∗ + 0) = −∞ . (B.7) 
The QIF can be related to a canonical model type I model called theta neuron 

(Ermentrout and Kopell, 1986) via a simple change of variables 𝑉𝑉 = tan 𝜃𝜃
2

 , thereby 
mapping the membrane voltage space onto a one dimensional ring through an 
isomorphism. The relative location on the ring is described by the angle 𝜃𝜃 ∈ (−𝜋𝜋,𝜋𝜋], 
which represents the phase of the oscillator; by convention a spike is produced when 
𝜃𝜃 = 𝜋𝜋. Equation B.6 becomes then: 

 
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

=
1
𝜏𝜏𝑚𝑚

(1 − cos 𝜃𝜃) + 𝐼𝐼 (1 + cos 𝜃𝜃) , (B.8) 

with the reset condition 
 𝜃𝜃(𝑡𝑡∗ − 0) = 𝜋𝜋, 𝜃𝜃(𝑡𝑡∗ + 0) = −𝜋𝜋 . (B.9) 

The period can be easily computed by integrating Equation B.8 between –𝜋𝜋  and 𝜋𝜋 , 
obtaining  

 𝑇𝑇 = �
𝑑𝑑𝜃𝜃

1
𝜏𝜏𝑚𝑚

(1 − cos 𝜃𝜃) + 𝐼𝐼 (1 + cos 𝜃𝜃) 

𝜃𝜃2

𝜃𝜃1

=  �
𝜏𝜏
𝐼𝐼
�tan−1

tan(𝜃𝜃 2)⁄

√𝜏𝜏𝐼𝐼
�
−𝜋𝜋

𝜋𝜋

==  𝜋𝜋�
𝜏𝜏
𝐼𝐼

 , (B.10) 

from which we see that 
 lim

𝐼𝐼→0+
𝑇𝑇(𝐼𝐼) =∞ , (B.11) 

i.e. the oscillations frequency will tend to zero. 
 
B.2. The effect of inhibition and the birth of a bifurcation 
In the PING model a QIF neuron (or, equivalently, a theta model) receives input from an 
inhibitory cell that has been previously excited by QIF firing. The effect of inhibitory 
synapses can be incorporated into Equation B.8: 

 
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

=
1
𝜏𝜏𝑚𝑚

(1− cos 𝜃𝜃) + (𝐼𝐼 − 𝑔𝑔𝐼𝐼𝑠𝑠𝐼𝐼)(1 + cos 𝜃𝜃) , (B.12) 

where 𝑔𝑔𝐼𝐼 is the synaptic strength or conductance and 𝑠𝑠𝐼𝐼 is any gating function, as for 
example instantaneous rise upon one excitatory spike, followed by exponential decay: 

 
𝑑𝑑𝑠𝑠𝐼𝐼
𝑑𝑑𝑡𝑡

= −
𝑠𝑠𝐼𝐼
𝜏𝜏𝐼𝐼

+ 𝛿𝛿(𝑡𝑡 − 𝑡𝑡∗) . (B.13) 

The new negative term in Equation B.12 introduces a dramatic change in the phase 
space of the system, by creating a bifurcation point, i.e. a topological change in the 
dynamics (Shlizerman and Holmes, 2012). In fact, for 𝑔𝑔𝐼𝐼𝑠𝑠𝐼𝐼 > 𝐼𝐼 this differential equation 

has two equilibrium points on the invariant circle for 𝜃𝜃± = cos−1 �1+𝐼𝐼−𝑔𝑔𝐼𝐼𝐺𝐺𝐼𝐼
1−𝐼𝐼+𝑔𝑔𝐼𝐼𝐺𝐺𝐼𝐼

�, one stable 

and one unstable. As inhibition fades, 𝑔𝑔𝐼𝐼𝑠𝑠𝐼𝐼 approaches 𝐼𝐼 and the two fixed points come 
close to each other, until they merge and disappear for 𝑔𝑔𝐼𝐼  𝑠𝑠𝐼𝐼 = 𝐼𝐼, i.e. the bifurcation 
point. For 𝑔𝑔𝐼𝐼  𝑠𝑠𝐼𝐼 < 𝐼𝐼 the total input to the QIF is positive, there are no fixed points, and 
the neuron starts firing regularly although its dynamics is slowed down in the vicinity 
of the ghost of the merged equilibrium points (𝜃𝜃 = 0). The theta model is an example of 
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Type I, whose oscillatory dynamics, thanks to the particular bifurcation it bears, can be 
made arbitrarily slow (see Appendix B.1); this remains true in presence of inhibition as 
long as 𝑔𝑔𝐼𝐼  𝑠𝑠𝐼𝐼 < 𝐼𝐼. 
 
B.3. Phase response curves 
Phase response curves have been introduced to quantify the advancements or 
regressions caused to a dynamical system by a perturbation of infinitesimal amplitude, 
arriving at time 𝑡𝑡. The PRC measures the difference between the standard period 𝑇𝑇 and 
the time to next spike 𝑇𝑇′, as a function of the time or phase at which the perturbation has 
been applied: 

 𝑃𝑃𝑅𝑅𝐺𝐺(𝑡𝑡) =
𝑇𝑇 − 𝑇𝑇′(𝑡𝑡)

𝑇𝑇
 . (B.14) 

Similarly, PRCs can be computed as a function of phase 𝜑𝜑 = 2𝜋𝜋 (𝑡𝑡−𝑡𝑡0)
𝑇𝑇

 , where 𝑡𝑡0 is the 
time at which the last spike has been emitted:  

 𝑃𝑃𝑅𝑅𝐺𝐺(𝜑𝜑) = 𝜑𝜑′ − 𝜑𝜑 . (B.15) 
an expression that is particularly useful for phase models like the theta neuron. Also, the 
PRC formalism remains effective even in presence of irregular oscillations, i.e. when the 
time difference between two spikes is subjected to a certain degree of randomness 
(Gutkin et al., 2005). 
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