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Abstract

Brain oscillations are dynamic entities, rapidly varying in time and frequency that are
extensively recorded in the mammalian brain. The aim of this thesis is to investigate the
role of cortical rhythms in human auditory cortex during speech perception, both with
computational and experimental methods. The first part of the doctoral work consisted
in developing a neural microcircuit model of nested oscillations for early auditory
processing, involving a fast Gamma rhythm (30-100 Hz) coupled to a slow Theta rhythm
(3-8 Hz). The model is capable of parsing speech into its constituents (i.e. syllables) and
extracting the syllabic information for latter categorization. In fact, Theta oscillations
flexibly track the quasi-periodic syllabic content of speech, and temporally arrange
Gamma spikes so that phonemic information can be efficiently encoded. We further
employed a set of advanced tools from dynamical system theory in order to uncover the
mathematical description of the neural circuit we have implemented in the simulations.
The second part of this dissertation relates to the transmission of information across the
auditory hierarchy in the brain, using two segregated frequency channels. We analysed
EEG signals from intracranial recordings in humans using cross-frequency coupling and
Granger causality. We found that Bottom-up information is dominated by Gamma
oscillations, while Top-Down flow is conveyed through Theta oscillations. We have also
shown that both flows fluctuate over time at a rate of about ~ 1-3 Hz, which suggests
that sensory information is conveyed using distinct frequencies and via discrete time

windows.
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Résumé

Les oscillations cérébrales sont des entités dynamiques, rapidement variables
dans le temps et la fréquence, qui sont enregistrées largement dans le cerveau des
mammiferes. L'objectif de cette thése est d'étudier le role des rythmes corticaux dans le
cortex auditif humain lors de la perception de la parole, a la fois avec les méthodes
computationelles et expérimentales. La premiere partie de la these de doctorat a consisté
en 1'élaboration d'un modele de microcircuit de neurones d'oscillations mélées pour les
premiers stades du traitement auditif, composé d'un rythme rapide Gamma (30-100 Hz)
couplé a un rythme lent Theta (3-8 Hz). Le modele est capable de décomposer la forme
d'onde vocale en ses constituants (i.e. syllabes), et extraire les informations syllabiques
pour les catégoriser. En fait, les oscillations Theta suivent le contenu syllabique quasi-
périodique de la parole de maniére flexible, et organisent temporellement les spikes
Gamma afin que l'information phonémique puisse étre efficacement codé. Nous avons
également utilisé un ensemble d'outils avancés a partir de la théorie des systemes
dynamiques, afin de découvrir la description mathématique du circuit neuronal que
nous avons mis en place dans les simulations. La deuxieme partie de cette these
concerne la transmission d'informations a travers la hiérarchie auditif du cerveau, en
utilisant deux canaux de fréquences distincts. Nous avons analysé les signaux EEG a
partir d'enregistrements intracraniens chez les humains, en utilisant le couplage entre
fréquences et la causalité de Granger. Nous avons découvert que 1l'information Bottom-
up est dominé par des oscillations Gamma, tandis que les flux Top-Down est transporté
a travers des oscillations Theta. Nous avons également montré que les suppléants de
l'inférence causale dans le temps entre les deux flux, a un taux de ~ 1-3 Hz, ce qui
suggere que la transmission de l'information procede par des fenétres de temps discrets
a des fréquences distinctes. Nous avons également montré que les deux flux fluctuent
dans le temps a un taux d'environ ~ 1-3 Hz, ce qui suggeére que l'information sensorielle
est transmise en utilisant des fréquences distinctes et a travers des fenétres de temps

discrets.
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1 Introduction overview

Temporal dynamics is often both a blessing and curse for physicists. Whether it
concerns the evolution of the wave function of some subatomic particle, the motion of a
comet crossing our solar system or the rate of growth of a population in biology, it is
hardly easy to deal with the flow of time in equations. This dissertation has a lot to do
with time and synchronization, and how these two aspects might be important for the
brain and, in particular, for the understanding of speech.

In the first Chapter of this dissertation we will go over almost a century of research
into brain rhythms, the synchronized waves of activity that are ubiquitously observed in
brain recordings. Although their presence has been linked to an astounding amount of
cognitive functions and mechanisms, their role remains unclear and many
neuroscientists still believe that they are an epiphenomenon. In this regard,
computational and analytical models can be extremely useful in tying down
experimental results to precise predictions and verify the consistency of a hypothesis.
Theoretical analyses do not only help the understanding of observed phenomena, but
also, most importantly, can highlight the actual advantages for the brain to use a
particular organization strategy, such as the use of brain rhythms, to perform its tasks.
In particular, simple models are often the most appealing because, as easy to
understand, they can be easily manipulated and understood. To introduce our
theoretical work on coupled oscillations (Fontolan et al.,, 2013), we present the most
relevant mathematical models of neuronal oscillation in Chapter 2, starting with a
tutorial on the basic models of single neurons and finishing with the state-of-the-art
models of coupled oscillations in the brain. In Chapter 3 we will see how the processing
of speech in auditory cortex is a privileged system to investigate the potential active role
of oscillations, given the remarkable matching between timescales in speech and in
cortical rhythms recorded locally. We will review the experimental evidence that
motivated our computational work on speech parsing by means of Theta (3-8 Hz) and
Gamma (30-100 Hz) frequency oscillations (Hyafil et al., 2015). Finally, in Chapter 4, we
will see how the role of oscillations is not limited to the decoding of sensory stimuli,
such as speech waveforms, but appears to be linked to a more global organizational
principle of the brain, i.e. the transmission of information from one brain area to
another. We found, by analyzing data recorded intracranially in humans, that two
distinct frequency channels are employed by the brain: Gamma band for stimulus-
driven, bottom-up communication, and Beta (13-30 Hz) band for anticipatory, top-down
processes (Fontolan et al, 2014). A thorough reflection on the theoretical and
experimental results of this dissertation is deferred to the Discussion. For the moment,
let us start with an historical overview of research on brain rhythm:s.



2 Brain rhythms

Pacha: What happened?
Old Man: Well, I threw off the Emperor's groove.
Pacha: What?
Old Man: His groove! The rhythm in which he lives his life. His pattern of
behavior. I threw it off. And the Emperor had me thrown out the window.
Pacha: Oh, really? I'm supposed to see him today.
Old Man: Don't throw off his groove!
Pacha: Oh, okay.
Old Man: Bewaaare, the grooove.
Pacha: Hey, are you gonna be all right?
Old Man: Grooove...
The Emperor’s New Groove, Disney (2000)

From whatever angle we look at it, the human brain strikes us as being an incredibly
complex system. Inside approximately 1300 grams of dense, bulky biological matter,
there are about a hundred families of neurons, the basic units of computation, for a total
of 86 billion (Azevedo et al., 2009), and more than 10 estimated synapses, the
functional contacts between brain cells, bearing a total of 100 different kind of
neurotransmitters each with its own dynamics. Neuronal spikes travel along about
176000 km of myelinated axons (average length 10 cm) to reach other neurons (Marner
et al,, 2003) at the speed of ~0.1-100 meters per second (de Callatay, 1992). Taken
together, these facts indicate a great variety of delays and transmission times, which
lead to the kind of noise-like neuronal activity that is usually observed (Dale and
Kandel, 1993; Hawkins et al., 1993; Murphy, 1997). And yet, in spite of this intricate
complexity (Koch, 1999), neurons are not at all careless about each other: their activity
becomes coordinated, giving rise to periods of synchronized firing followed by quasi-
silent epochs. These alternations are ubiquitous in the brain and can be observed using
several different neural data recordings techniques, provided that the latter have a good
temporal resolution (Ward, 2003; Buzséaki and Draguhn, 2004).

In this chapter I will review the key experimental facts relevant to the study of
brain oscillations, followed by the possible computational mechanism that could
generate such rhythmic activity and its potential function(s) in cognitive processing.

2.1 Historical background and recent developments
Rhythmic neuronal discharges have been documented in the early 20th century by Hans
Berger, who is the inventor of the electroencephalography (EEG) technique and was the
first to detect electrical oscillations in the human brain (Berger, 1929). Thereafter, brain
oscillations have been studied across many different species and through a miscellany
of invasive and noninvasive techniques, starting from the aforementioned EEG, at the
level of the scalp (Tallon-Baudry et al., 1999) and at the subcranial level (Kahana et al.,
1999), but they have also been found in magnetoencephalography signals (MEG) (Siegel



et al., 2012), local field potentials (LFP) (Bragin et al., 1995; Jutras et al., 2013), single unit
activity (SUA) and multi-unit activity (MUA) both in vivo (Sanchez-Vives and
McCormick, 2000; Lee et al., 2005) and in vitro (Carracedo et al., 2013). Countless clinical
and fundamental studies have examined oscillatory patterns under the most disparate
brain states, ranging from conscious processing of complex stimuli (Henry et al., 2014)
to states of deep coma (Schabus et al., 2011).

Initially the amplitude of rhythmic oscillations was found to be much larger
during rest, sleep, unconscious states and under anesthesia. It is for this reason that the
cognitive and functional role of these patterns have been overlooked for many years,
and only recently researchers have turned their attention to the potential role of
oscillations during awake brain states. As a matter of fact, even some of the patterns
previously thought to be a signature of a lack of consciousness have now been related to
brain activity in the vigilant state, such as, for example, the replay of spatial memory
sequences in the hippocampus (Louie and Wilson, 2001). Furthermore, with the help of
pharmacological tools, brain waves can now be produced in vitro and observed in vivo
at the level of single cells, allowing for the investigation of causal relations between
rhythms and behavior. Combined together, these factors prompted the comeback of
interest towards studying oscillations and their potential functions during cortical and
subcortical operations (Buzsaki and Draguhn, 2004). They seem to be likely candidates
for the facilitation of information selection and transmission through input filtering
(Hutcheon and Yarom, 2000; Akam and Kullmann, 2010), coordination of distant areas
(Womelsdorf et al., 2007) and binding of perceptual information (Engel et al., 2001;
Roopun et al., 2008a; Singer, 2013). Similarly, the execution of sensory-motor functions
(Schoffelen et al., 2005), the formation and persistence of memories (Fell et al., 2001;
Jensen and Lisman, 2005; Axmacher et al., 2006; Steriade, 2006), and synaptic plasticity
dynamics (Huerta and Lisman, 1995; Bukalo et al., 2013) also involve oscillations of
some sort. Nonetheless, the task of going beyond simple correlations between rhythms
in the brain and behavior, and thus demonstrating causal relationships between
oscillations and cognitive functions, proved to be impervious. This reflects in the fact
that, until recently, many prominent neuroscientists were skeptical and considered them
an epiphenomenon (Koch, 1993; Frégnac et al., 1994; Pareti and De Palma, 2004). It also
reflects a lack of appropriate methodological tools to properly assess the causal role of
oscillations: experimental techniques did not allow to selectively manipulate and
perturb rhythms in vivo, until the very recent emergence of advanced optogenetics
techniques. This fantastic tool relies on a set of genetically modifications that change the
molecular composition of the membrane in specific neurons, so that, when targeted with
light at a given wavelength, the firing activity of these neurons can be enhanced or
suppressed (Boyden et al., 2005). Future optogenetics studies might have enormous
potential implications in revealing the actual role of brain waves, if any. In addition, a
number of methodological precautions must be considered, i.e. to avoid the effect of
volume conduction from distant areas (Sirota et al., 2008) or to minimize false positives
when filtering (Quian Quiroga et al., 2001). It becomes crucial then to track down the
neural mechanisms that generate brain waves, and to tie them to the function they
perform in the brain, but before doing that let us shortly recapitulate how oscillations



are measured in brain recordings.

2.2 Oscillations and brain functions

In order to be captured by the macroscopic electrodes of EEG, brain waves like the ones
observed by Berger must arise from time activity of somewhat synchronized big
neuronal ensembles. Intuitively, in fact, the asynchronous activity of thousands of
neurons would produce a bunch of waves with random phases, which, when summed
together, would on average result in the cancellation of their amplitudes and thus one
should not be able to measure an electrical signal. Indeed, it is almost impossible to
avoid the presence of brain oscillations when recording from almost any region in the
brain, at least on a large spatial scale, but, in addition to the average signal produced by
the collective dynamics of large cell assemblies, oscillations can as well be detected in
single neuron activity (Llinds, 1988). The neuronal membrane often displays coherent
fluctuations in its voltage that can be measured intracellularly or extracellularly in the
LFP, which contains contributions from all ionic processes occurring in the cell, at all
levels: soma, axon, dendrites and even synapses (Buzsaki et al.,, 2012). The number of
neurons that can be recorded and the spatial resolution of the signal heavily depends on
the size of the inserted electrode, ranging from the few tens of micrometers of
microarrays used in animal research (about 1000 neurons with a radius of ~50-120 pm)
to the few millimeters of stereotactic depth electrodes implanted in epileptic patients
(about 10000 neurons with a ~0.25-0.5 mm radius). The latter technique, called
stereotactic electroencephalography (SEEG) is used to record local fields in human
subjects, as for example in epileptic patients to locate the seizure focus. Intracranial EEG
(EEG) methods (stereotactic EEG, SEEG, and electrocorticography, ECoG) have both a
higher signal-to-noise ratio and a better spatial resolution than any non-invasive
technique like EEG or MEG (Kahana et al., 2001). Thus, they are well placed in order to
detect oscillations at all frequencies, even high frequency oscillations (40-120 Hz) that
are very hard to see in scalp recordings (Lachaux et al., 2012).
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Figure 1. Power laws in brain recordings.

Power spectrum of a single electrode in human EEG recordings, exhibiting the characteristic
power-law decay. The log-log scale plot transforms the 1/f% curve into a straight line, whose slope
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is the exponent & (in this figure a~ — 2). Subjects were recorded with their eyes closed during
resting-state behavior. Adapted from (Jirsa, 2009).

2.2.1 1/f background and the meaning of spectral peaks
When recording from multiple units, regardless of the technique used, the so-called 1/f
background noise is an omnipresent feature of the frequency spectrum. Figure 1 shows
the average power spectrum P(f) of EEG recordings in humans as a function of
frequency f, computed using complex Morlet wavelets (Goupillaud et al., 1984). By
fitting the power spectrum to the function P(f) = f~% one typically obtains an exponent
in the range a =[0,3], where the extreme values might be approached only
asymptotically. A distribution on this kind is called a power law and it has been reported
in studies regarding the most disparate physical (Bak and Paczuski, 1995), biological
(Musha and Yamamoto, 1997) and social systems (Baillie, 1996). This class of
distributions has several peculiar features that make it a rather special class. First of all,
for large values of f, the probability P(f) remains finite and much higher than in the
Gaussian distribution. Intuitively, this happens because large frequency values result in

a bigger denominator infia , while in power laws they cause a (much more dramatic)

change in the exponential (Pgqys5(f) = e™1); thus, extreme events are much more likely
to occur if the underlying process is explained by a power law than the usual Gaussian
distribution. For this reason power laws are often called fat- or heavy-tailed distributions.
The second key property is scale invariance: power laws described by the same
exponent a are scaled versions of each other, so that there is no typical scale or size for
the variable f. This peculiarity suggests a connection with fractals and with critical
phenomena in physics that could potentially revolutionize our understanding of the
brain as a complex system poised in the vicinity of a critical point (Kello et al., 2010).
Such systems are more efficient in adjusting their internal representations to be good
proxies of reality (Hidalgo et al.,, 2013, 2014), a feature that would obviously be of
utmost interest to neuroscientists. In fact, power spectra estimated from scalp or

intracranial EEG data indeed show a fia dependency at least within about two orders of

magnitude (Freeman et al., 2003) and could be generated thanks to activity-dependent
time-varying synaptic strengths (Levina et al.,, 2007). However, the identification of
underlying processes giving rise to power laws in the brain is still controversial: a line of
work pursued for example by Destexhe and collaborators has led to the hypothesis that

fia distribution in brain signals is a consequence of spatial filtering due to the structure

of extracellular media (Bédard et al., 2006, 2010; Bédard and Destexhe, 2009) and thus
should be treated as noise instead of a proof for criticality. From a theoretical
perspective there are, borrowing the words of Rudyard Kipling?!, nine and sixty ways of
constructing power laws, and every single one of them is right: i) from the spectrum of
some classes of diffusion processes (Milotti, 2002), ii) from a central limit theorem for
multiplicative growth processes (ljiri and Simon, 1977; Reed and Hughes, 2002), iii) from
a superposition of exponentially relaxing processes (Dutta and Horn, 1981), and iv) even

1“In the Neolithic Age’, The Seven Seas (Nabu Press, 2010).
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from windowed sampling of white noise (Kasdin, 1995). At the moment no consensus
has been reached regarding the explicit mechanisms that originate power laws in brain
signals, although an interesting view links these distributions to the activity of coupled
neural oscillators in the vicinity of one or more attractors of the dynamics (Reed and
Hughes, 2002; Teramae and Tanaka, 2004; Deco and Jirsa, 2012). In fact, a system of
brain oscillators, almost uniformly distributed on a logarithmic scale along the
frequency spectrum as in Figure 2, could give rise to such a scenario (Buzsdki and
Draguhn, 2004). Brain rhythms are usually visible in the frequency spectrum of short-
term EEG or MEG as ‘bumps’, standing out from the 1/f shaped background activity. If
different frequency bands can be present at rest, they can be modulated by cortical input
or neuromodulators during the performance of an active cognitive or motor task. Also,
distinct rhythms can coexist and sometimes interact, giving rise to very interesting
effects that will be reviewed below.
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Figure 2. Brain rhythms in the frequency spectrum.

Normalized amplitude of different brain rhythms generated in cortical slices of rodents. The
spectral peaks, that identify the different thythms (frequencies may vary across species), are well-
separated in frequency and are generated in different layers of the cortical sheet. Adapted from
(Roopun et al., 2008a).

2.2.2 Synchrony and cross-frequency coupling
Theoretical studies had already pointed out that grouping together neurons which are
carrying similar (to achieve redundancy and therefore robustness) or complementary
(so as to bind together the various pieces of information related to a common object)
information must be a fundamental task of the brain (Tsukada et al., 1996). This claim
has gain much more attention recently, as it has been actually shown that neural
assemblies in sensory cortex do display a dynamical and rhythmic time course,
particularly those who fire in the Gamma (30-100 Hz) frequency band (Shadlen and
Movshon, 1999; Fries et al., 2002; Buzsaki and Wang, 2012), grouping together the
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activity of cells on a small spatial scale. The coordination of these neural populations in
time and space would also be fundamental in order to enhance (or inhibit)
communication between distant areas, a goal that can be achieved by tuning the two
populations so that they spike in phase (or antiphase), according to the “communication
through coherence” hypothesis proposed by Fries and collaborators (Fries, 2005).
Further theoretical work by Akam and Kullman investigated the potential advantages
of spatial and temporal oscillations in selectively transmitting population-coded
information, even in the presence of asynchronous background noise from other neural
sources (Akam and Kullmann, 2010). What is the mechanism that underlies the control
of Gamma neural assemblies then? Several lines of evidence, both from computational
and experimental studies, converge towards low frequency oscillations (1-20 Hz) as
being well suited for the coordination of neurons on larger spatial scales (Buzsaki and
Draguhn, 2004) using long-range connections, while fast Gamma waves act prevalently
on short-range monosynaptic synapses (von Stein and Sarnthein, 2000). The interactions
between low and high frequency rhythms, named cross-frequency coupling (CFC), have
been extensively observed both with in vitro and in vivo experiments (Jensen and
Colgin, 2007; Young and Eggermont, 2009), and can take complex forms. CFC will be
the object of a review article we are currently writing (Hyafil, Giraud, Fontolan, &
Gutkin, in preparation). In fact, an oscillation is defined through three main features
(frequency, amplitude and phase) that can interact and generate up to nine distinct
coupling combinations. However, only four of all potential pairs are actually
meaningful: phase-frequency coupling, i.e. when the phase of a slow oscillation (SO)
interacts with the frequency of a fast rhythm (FO); phase-phase coupling (i.e. phases of SO
and FO); phase-amplitude coupling (i.e. phase of SO and amplitude of FO); and, last,
amplitude-amplitude coupling (i.e. amplitudes of SO and FO). The latter is the easiest to
measure although its functional relevance has not been understood yet (Canolty and
Knight, 2010): its presence, either measured between two areas or within a single region,
has been linked to increased membrane excitability, possibly via a common input source
(Young and Eggermont, 2009). Conversely, phase-phase couplings are hard to reveal
experimentally due to the smallness of the effect (Hunter and Milton, 2003) and the fact
that they are typically found in conjunction with phase-amplitude coupling. Recently,
with the appropriate methods to measure phase of non-harmonic oscillators, phase-
phase coupling were revealed in animal models (Akam et al., 2012; Belluscio et al.,
2012). Phase-frequency couplings are extremely hard to disentangle from other forms of
coupling. The most interesting and prominent of the cross-frequency combinations is
indeed phase-amplitude coupling (PAC, not to be mistaken with primary auditory
cortex). PAC has been reported between many distinct frequency bands, using a myriad
of recording techniques on several different organisms and brain areas (Canolty et al.,
2006; Schroeder and Lakatos, 2009; Belluscio et al., 2012; van der Meijj et al., 2012).
Perhaps the most famous example of PAC has been found in the hippocampus,
involving Theta (3-8 Hz) and Gamma (30-100 Hz) frequencies, both in rodents (Bragin et
al., 1995; Tort et al., 2007a; Wulff et al,, 2009; Lisman and Jensen, 2013) and humans
(Axmacher et al., 2006; Staudigl and Hanslmayr, 2013), the interpretation being that the
phase of slow Theta cycles correlates with the power of fast Gamma rhythm to represent
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sequences of related objects (features). This idea, originally formulated by Lisman
(Lisman and Idiart, 1995; Jensen and Lisman, 2005), was initially applied to the encoding
of multiple items in working memory by the hippocampus. More recently, it has been
extended to other neural systems, frequencies and computational functions, suggesting
that the PAC scheme could be a fundamental configuration of mammalian brain
(Canolty and Knight, 2010). For example, while Theta-Gamma PAC in the hippocampus
could underpin non-visual working memory, Alpha-Gamma PAC over parietal-
occipital networks (where Alpha has a frequency range of 9-13 Hz) is thought to
mediate the visual part of working memory (Roux and Uhlhaas, 2013). Similarly, Theta-
Gamma coupling has been linked to spatial navigation in rodents, where, specifically,
Theta sequences reflect the capacity of the hippocampus to bind together and store
information about spatial locations at a rate of one location per Gamma cycle (Lisman,
2005; Lisman and Buzsaki, 2008). Alpha-Gamma coupling in humans and in monkeys
was instead proposed to be involved in the spatial encoding of the visual field in
primary visual cortex whereby, in this instance, the order of activation of neural
representations within one Alpha cycle would depend on the saliency of the
corresponding stimuli (VanRullen and Koch, 2003; Jensen et al.,, 2014). Even more
importantly, a series of recent works has highlighted the presence of a whole hierarchy
of nested oscillators, i.e. a battery of rhythms mutually linked through PACs, within
visual (Lakatos et al., 2008; Schyns et al., 2011) and auditory (Lakatos et al., 2005) regions
of primates. The authors measured the LFP/EEG signal across different layers and
regions, and noticed that distinct thythms are tied to each other through PACs. Such a
system of interacting neural populations, firing at distinct frequencies, is a powerful tool
to regulate neuronal excitability inside a particular region and within discrete time
windows. Furthermore, this interplay brings a major contribution to the understanding
of how neurons might encode stimulus features.

A number of influential articles have put forward the idea that neurons firing in
the Gamma band are the readout units of the brain, not only in the hippocampus to help
spatial navigation, but also in prefrontal and sensory cortices (Fries et al., 2007; Lisman
and Jensen, 2013). Per contra, the actual neural code is unknown at the moment: despite
the countless number of publications on this subject, for many years neuroscientists
have limited their interpretation to the firing rate in order to explain their data, i.e. the
average number of spikes emitted by a neuron per unit time (often further averaged
across trials). Alternative strategies, such as taking into account the exact temporal order
of spikes, are appealing given that they are more informative (Diesmann et al., 1999;
Salinas and Sejnowski, 2001), albeit much more fragile, since they are much more
vulnerable to trial-by-trial variability of neural signal (Ferster and Spruston, 1995;
Softky, 1995). In order to reduce the influence of noise, the time windows within which
firing rates are computed can be discretized into smaller bins, and spikes can be labeled
according to the particular bin inside which they occur (Optican and Richmond, 1987).
Tagging action potentials enhances the information decoded from recorded neurons
(Panzeri et al., 2010), demonstrating that spike trains are remarkably reliable across
trials, at least within an optimal time bin. However, this binning process is artificial,
meaning that the brain has no access to the binning scheme imposed by experimenters.



So, does the brain have access to some kind of internal time discretization strategy? Low
frequency oscillations, like those in the Theta range, can be the answer to this question,
by providing the internal time reference necessary to enhance the encoding of
information in the network. Being coupled to neurons participating in the Gamma
rhythm, their time course relative to Gamma spikes is quite consistent and provides a
powerful tool to define the decoding window for a much more accurate readout
(Brasselet et al., 2012; Kayser et al., 2012; Panzeri et al., 2014). In the case of PAC, a
straightforward encoding scheme in constructed by combining the temporal sequence of
Gamma neurons spikes with a phase-code (Hopfield, 1995; Varela et al., 2001; Mehta and
Lee, 2002; Kayser et al., 2009) obtained by binning the phase of slow frequency bands
into n intervals, and then assigning a tag to each spike according to the interval in which
they fall (Figure 3). Hence, cross-frequency coupling, and especially phase-amplitude
coupling, may be a rather efficient method to organize the collective behavior of
neurons. With the help of computational models we show that this combinatorial code
not only maximizes the encoded auditory stimulus information, but also adjusts the
timing of sensory output for upstream decoding neurons (Hyafil et al., 2015).

Given the pervasiveness of CFC, the question is whether or not this scheme
constitutes a fundamental blueprint for communication in the brain. It becomes
therefore necessary to rule out the possibility that it might reflect an epiphenomenon,
and to provide even more compelling evidence to bind together cross-frequency
couplings and brain functions, with the help of methodological advancements. We are
currently writing a review paper on cross-frequency coupling, with the aim of
illustrating the link between the mechanistic functions and the underlying neural
circuits generating the couplings (Trends in Neurosciences, review proposal accepted).
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Figure 3. Phase information code.

Schematic illustration of different neuronal codes. In the spike count (or firing rate) code we simply
sum the number of spikes occurring within a window of fixed length (1, 2, 3 or 4). In the time-
partitioned code, the window is divided into four subintervals, and each spike is assigned to a
subinterval depending on its timing. In the phase-partitioned code, we assign an additional label to
each spike, depending on the phase of low frequency LFP at which a spike occurs. The latter code
is much more informative (Hyafil et al., 2015) and rises from an endogenous reference mechanism



that could be accessible to neurons, in contrast with the other codes that are somehow artificially
determined. Adapted from (Kayser et al., 2009).

2.2.3 Phase-amplitude coupling and causality
Having established that hyperpolarization-depolarization cycles within a given layer or
area give rise to oscillatory patterns in the LFP, and that multiple rhythms coexist and
intertwine, it becomes then crucial to establish whether the coupling is just apparent, as
it would result if the two rhythms were driven by a common input, or is caused by
directed influence from one rhythm to the other. Currently, the most popular family of
measures used to assess the causal interactions between time series is that of Granger
causality GC). First introduced by Clive Granger in 1969 (Granger, 1969) to better
understand economic data, this measure lies at the core of many causal inference
methods such as information theory based estimators (e.g. transfer entropy) and
classical linear estimators based on correlation or coherence (partial directed coherence,
directed transfer function). In its simplest implementation, based on multivariate
autoregressive models (MVARs), has already been successfully applied to large-scale
brain data (Bressler and Seth, 2010; Brovelli, 2012; Saalmann et al., 2012). This approach
relies on a few simple steps and works for as many variables as desired. Here, we
illustrate the computations for the two variables case. First, the current value of a time
series is modeled as the linear sum of its past values weighted by some vector, plus a

term incorporating the unpredicted stochastic variations:
n

X, = 2 arX,_ + €F, 2.1
i=1
where n is the order of the autoregressive model. Then we construct a second model,

where the past of a second variable Y is added to Equation 2.1:
n

n
Xe = Z ai” Xe-i + Z a;” Yo +0f, 22)
i=1 i=1
and a similar equation for X;. Now, if the presence of the second term in Equation 2.2
helps to reduce the error term 1, with respect to &, then Y is said to cause X, i.e. its past
reduces the uncertainty over the present of X. The Granger causality coefficient is easily
defined as:

var(ef )) 23)

GCy_x = log <Var(n S
An equivalent measure in the frequency domain has been introduced by Geweke
(Geweke, 1982), based essentially on applying a Fourier transform on the MVAR so that:
(o) Av(@)(X@)_ (@) 24
A% (w) AV (0)/\Y (@) \n¥(w)/)’
where A (w) = 1 — X7 aife @k, A% (w) = 1 — X7 a;” e '@k, etc.
If matrix A(w) is invertible, by applying A~!(w) to both sides of Equation 2.4 we can
write
(X(w)) _ (H’”‘(w) H"y(w)) (n"(@) 2.5)
Y(w)/ \H™(w) H?(w)/\n”(w)/)’ ’
where H(w) is called transfer matrix. The spectral matrix S(w) of the process can be
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factored in terms of the transfer matrix H(w), its complex conjugate H*(w) and the
var(ny)  cov(nF,my)
cov(n},nf)  var(n)
theorem (see Gevers and Anderson, 1981, for further details):
S(w) = Hw) X H* (w) . (2.6)
The two diagonal elements of the spectral matrix, Sy, (w) and S,,,, (w) simply represent

covariance matrix X = < >, according to the spectral factorization

the spectra of variables X and Y, while off-diagonal terms, Sy, (w) = S;,(w), contain the
cross-spectrum of the two variables. After proper normalization ((Chen et al., 2006), the
causal interdependence in the frequency domain can be expressed as the ratio:
G- =108 5Ty

where Sy (0) = Zyp[H* (w)]? + 2y, |H* (w)|?. The first term, equal to the denominator,
represents the portion of the spectrum due to X;, whereas the second term reproduces
the power of X; contributed by Y;. Thus, if ¥; has a direct impact on the spectrum of X, at
a given frequency w, then GC(w)yyx # 0 and Y; is said to cause

2.7)

X; at frequency w. Although the MVAR approach is simple and powerful, it requires a
few conditions to be met in order to work correctly: i) the integral of GC(w)y_x over all
frequencies must be equal to the time-domain GC; ii) the time series X; and Y; must have
zero mean and their covariance must be stationary. Unfortunately, time series recorded
from the brain often do not meet these criteria, plus it has been shown that the use of
bandpass filters may destroy the correct causal relations (Seth, 2010), making the
MVAR formulation useless.

An alternative, more powerful approach to compute GC on brain data has been
proposed more recently by Dhamala and collaborators (Dhamala et al., 2008). Their
formulation is nonparametric, meaning that matrices S, H and X are not derived from the
MVAR parameters but are inferred directly from a time-frequency decomposition of the
time series. For brain recordings, this means that the spectral matrix § can be easily
obtained from any spectral representation of the data (Fourier decomposition, wavelet
transform, etc.), avoiding the flaws of MVARs, such as having to use very high order
models to account for nonstationarity, thereby increasing the estimation error and
potentially introducing spurious causal effects (Detto et al., 2012). Transfer matrix H and
covariance matrix X are computed using Wilson’s spectral factorization algorithm
(essentially a series expansion in nonnegative powers of the exponential function
f(w) = e?™). In the case of Morlet wavelet decomposition (Goupillaud et al., 1984), i.e.
the approach we used in (Fontolan et al., 2014), this allows to restrict the validity of the
aforementioned criteria to the length of the wavelet, a condition much easier to fulfill. In
this form, Granger causality has been successfully employed to test directional
influences between two or more brain areas at a given frequency (Bosman et al., 2012;
Bastos et al., 2014; Fontolan et al., 2014; van Kerkoerle et al., 2014), but it cannot be used
to assess causal interactions across frequencies as for example in a PAC scheme. It does
not exist, at the moment, any linear measure to assess causal interactions between two
separate frequencies. The only available measure is dynamical causal modeling (DCM,
see C. C. Chen, Henson, Stephan, Kilner, & Friston, 2009, and Friston, Moran, & Seth,
2013), which is nonlinear and requires a set of somewhat precise hypotheses, being
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model-based. Indirect causal interactions can be revealed to a substantial extent using a
combination of GC methods and standard PAC measures such as the modulation index
or circular-to-linear correlation, as it has been envisaged for the first time in our article
(Fontolan et al., 2014, see Appendix A and Penny, Duzel, Miller, & Ojemann, 2008, for
an exhaustive review of PAC methods).

Throughout this Section we have seen how synchronized assemblies of neurons
can give rise to nontrivial patterns of alternating excitations and inhibition that can be
revealed with almost all brain recording techniques. In the next Section we will turn our
attention to a brief but complete review of recent literature on computational models of
neuronal oscillations and examine the possible different network architectures that
produce such rhythmic patterns in cortical circuits.

3 Computational models of brain oscillations

The best material model of a cat is another, or preferably the same cat.
Norbert Wiener, Philosophy of Science

Since the very first recordings of neural activity, scientists have sought to formalize their
observations into a mathematical framework, for a better understanding of the
implications and potential consequences of the experimental results. In the context of
brain rhythms, theoretical analysis and computational modeling are key tools for
understanding how oscillations are generated, both at the cellular and at the circuit
level, to establish why they work in that particular way and find out which function (if
any) they subserve. A theoretical framework allows to tie together these aspects into a
compact, efficient formal representation, providing testable predictions and, ideally, a
set of unifying principles that underlie cortical rhythms. We will now review the
biophysical mechanisms giving rise to these rhythms in individual neurons and in
neuronal populations.

3.1 Single neuron models
It is well known that he membrane potential of individual neurons displays oscillatory
patterns at different frequencies (Llinds and Yarom, 1986; Llinas, 1988, 2014, Wang,
2010), suggesting that the simplest source of brain oscillations is the neuron itself. We
may, in fact, consider all neurons as oscillators, as long as they exhibit periodic or quasi-
periodic firing in response to an external constant current drive I,. Generating a spike is,
as a matter of fact, a dynamical process involving several internal (i.e. ion channels,
membrane properties, neuronal topology) and external (i.e. chemical and electrical
synaptic input from coupled surrounding neurons, LFP oscillations) variables across a
myriad time scales. The most basic essential ingredients to obtain the nonsinusoidal
wave patterns that are typical of biological oscillators (Kruse and Jiilicher, 2005),
irrespective of the particular system under consideration, are a rapid excitation followed
by a relatively slow inhibition. This type of nonlinear dynamical system is an example of
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relaxation oscillator, commonly found in biological processes (Hill, 1933; Mirollo and
Strogatz, 1990, Wang, 2001). During the generation of a spike, neurons behave as
relaxation oscillators whose two crucial components are, in this particular case, voltage-
gated activation of sodium current and subsequent activation of potassium channels. In
the phase space, such system normally lies in a global attractor state when at rest or
when in presence of weak (subthreshold) inputs, but it gets rapidly activated once a
strong enough stimulus pushes the dynamics to make a wide excursion above
threshold. Finally, the inactivation of sodium channels and the opening of potassium
pumps bring the system back to the stable resting state. One might ask whether the
fundamental dynamical patterns of a topologically complex real neuron, potentially
implicating more than a hundred coupled variables (Yamada et al., 1989), might actually
be grasped by using only an exiguous number of components. The answer is, as we will
see, yes in most cases, at least as far as synchronization properties are concerned. This
mathematical reduction is extremely useful since low dimensional systems are certainly
more tractable and sometimes even analytically solvable. The famous Hodgkin-Huxley
(H-H) model (Hodgkin and Huxley, 1990) does a pretty good job mimicking a
pyramidal neuron by modeling its dynamics with a set of four nonlinear differential
equations. The most important of these equations defines the current-voltage relation,
while the remaining three equations describe the activation of ion channels during spike
generation. The H-H equation set accounts for many dynamical patterns observed in
real data, like sub and suprathreshold behaviors, adaptation, bursting. At the price of
being able to account for only one of these behaviors at a time, the H-H model can be
further simplified by reducing the number of variables. Although the details of ionic
dynamics are important for spike generation mechanisms and to compute the time it
takes to repolarize the membrane potential, reduced models are useful to simulating
large networks, due to their lower computational weight. Examples of simplified model
include, in descending order of complexity, the Fitzhugh-Nagumo model (Fitzhugh,
1961; Nagumo et al., 1962), Izhikevich’s neuron model (Izhikevich, 2004), and the
integrate-and-fire (IF) neuron (Gerstein and Mandelbrot, 1964; Abbott and van
Vreeswijk, 1993) in all its forms (linear, quadratic or exponential). The latter is
particularly interesting in order to simulate large-scale neuronal oscillations (Burkitt,
2006), especially in its quadratic configuration (see Appendix B). For the moment let us
introduce the leaky integrate-and-fire neuron with the help of Figure 4: it consists of a
point-like physical entity whose voltage is described by a circuit containing one
capacitance C, a single resistor R to account for membrane current leakage, both driven
by an external current I(t) symbolizing synaptic input from other neurons. Whenever
the voltage V reaches a threshold value V;, the neuron emits an instantaneous spike and
the switch closes the circuit. When the system is short-circuited it means that the
integrate-and-fire neuron is insensitive to further inputs for a fixed amount of time t,.
Such simple circuit only captures the very basic features of a biological neuron,
although adding a voltage-dependent capacitance that allows to model the rapid
opening of sodium channels during spike generation can of course enrich it. When the
capacitance dependency is quadratic the model is called quadratic integrate-and-fire (QIF,
Ermentrout and Kopell, 1986). The QIF is an example of type I neuron, whose canonical
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form is called the theta model: for their importance in computational neuroscience, the
two models are reviewed in Appendix B. Neuron models are classified into type I or II
depending on the particular class of bifurcations they display: type I neurons are
associated with saddle-node (SN) bifurcations, and their oscillation frequency approaches
zero when reducing the input drive; instead, the onset of oscillations in type II cells (e.g.
the H-H model) occurs at a finite frequency. Pyramidal excitatory neurons seem to
behave like type I or II models depending on the area and the cortical layer considered
(Tateno and Robinson, 2007; Tsubo et al., 2007), while inhibitory interneurons” behavior
appears to be closer to type II (Tateno et al.,, 2004; Mancilla et al., 2007). This hence
means that the QIF model is better suited to simulate a pyramidal cell in
granular/infragranular layers (Tsubo et al., 2007), and that its spiking frequency can be
made as low as desired, by varying the bifurcation parameter, i.e. the ratio of excitation
and inhibition (see Appendix B). In the next paragraph we will see what happens if we
start connecting neurons to each other, using the computational models we have just
introduced here.
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spike pulse

> e | | pre—
c R § Tref

1

Figure 4. Electrical circuit of the neuronal integrator.

Schematic diagram of electrical circuit describing the integrate-and-fire model. The external
current I(t) charges the RC circuit. The voltage V(t) across the capacitance is compared to a
threshold 6. If V(t) > 6 at timet = t" a spike pulse §(t - t*) is emitted. The system is then short-
circuited for a time ¢ by closing the switch on the right branch.

3.2 Neuronal networks: circuitry for oscillations
Even if we have just seen that a single neuron can produce a well-defined oscillation by
spiking regularly in time, we know that cortical neurons are all highly interconnected
through many excitatory and inhibitory synapses. Many physical and biological systems
can be viewed as an ensemble of local subsystems, coupled to each other to produce a
collective behavior. In other words, borrowed from physics, a system made of several,
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often countless, degrees of freedom can be quickly brought down to a system of just a
few degrees of freedom, thanks to the mutual interactions between its oscillating
elements. In physics this phenomenon is called slaving principle (Haken and Sauermann,
1963). In the case of cortical circuits, neural cells might fire at very different frequencies
when isolated, but, when connected, they are attracted toward a single common spiking
frequency. This scenario gives rise to a class of periodic or quasi-periodic phenomena
named strong rhythms. When, instead, the system exhibits a single average collective
mode of oscillation but its elements are still oscillating at distinct frequency, the rhythm
is said to be weak or sparse. The two main parameters that determine the strength of the
considered rhythm are obviously the potency of the coupling and, when present, the
intensity of any external driving input. Coupling intensities (i.e. synaptic weights) can
be quite heterogeneous in the brain, giving rise to both types of rhythms serving
different purposes (Brunel, 2000; Brunel and Wang, 2003; Kopell et al., 2010; Buzsaki
and Wang, 2012). Also, computational studies have shown that neuronal oscillations can
rise in presence of both irregular (Brunel and Hakim, 1999; Mongillo and Amit, 2001)
and synchronized input (Borgers and Kopell, 2005; Kopell et al., 2010), depending on the
considered parameter set. An important tool to study synchronization in presence of a
small rapid inputs is the Phase Response Curve (PRC) defined as the time (or phase) shift
in the oscillation cycle induced by an infinitesimal perturbation (Kuramoto, 1984;
Hansel et al., 1995; Ermentrout, 1996). Let us consider a neuron which exhibits intrinsic
tiring with constant period T, a PRC measures the advancement (or delay) provoked by
a small perturbation occurring at time t, or, equivalently, at phase ¢ (see Appendix B).
PRCs have been measured experimentally in single neurons by stimulating the soma
and measuring the changes time to successive spikes, and computed theoretically for
the different classes of neural models. Previous works (Ermentrout, 1995; Brown et al,,
2004) have thus pointed at the important qualitative difference between type I and type
II models: the PRCs of type I models are always positive when stimulated with an
excitatory input, while those of type II neurons, rather counterintuitively, present a
negative portion, i.e. a region in the phase space where an excitatory stimulus will
induce a delay in the generation of the next spike. Intuitively, the shape of the PRC is
particularly relevant to understand the synchronization properties of interconnected
cells (Smeal et al.,, 2010), especially since it can be extended to stronger and longer
interactions (Gutkin et al., 2005). The synchronization properties of brain networks, in
fact, can be predicted by computing the long term phase relationship of two (or more)
mutually interacting neurons in the PRC formalism, provided that the effect of the
perturbation is lost after maximum two cycles (Oprisan and Canavier, 2006). As a result,
previous studies have found that both excitation and inhibition can lead to synchronize
patterns of activity (Van Vreeswijk et al., 1994; Terman et al., 1998), although inhibition
is more suitable than excitation (Hansel et al., 1995) in order to create stable
synchronization. It is still debated whether reduced models combined with the PRC
formalism is actually a useful method to simulate and study biological neural networks,
given the degree of complexity of real brain circuits. For the purpose of this thesis we
adopt the opinion expressed by the authors of (Smeal et al., 2010), i.e. that even if several
quantitative and a few qualitative details are lost, the most important features of those
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circuits are still represented in the models mentioned above. The interested reader will
find an exhaustive review on this topic in the article of Smeal and collaborators (Smeal
et al., 2010).

Nevertheless, even if PRCs are useful in many situations and allow for a
qualitative understanding of even rather strongly coupled systems, it becomes
sometimes necessary to use numerical simulations in order to grasp the quantitative
details and make the correct predictions for future experimental manipulations. This is
the case for Gamma rhythms in hippocampus and neocortex. Indeed, we know from in
vitro experimental works that there exist two main mechanisms of inhibition-based
strong rhythms (Whittington et al., 2000; Tiesinga and Sejnowski, 2009; Pietersen et al.,
2014): the interneuron network Gamma (ING) where a population of inhibitory
interneurons are firing together thanks to self-inhibition, and the pyramidal interneuron
network Gamma (PING) where synchrony is achieved by means of coupled excitation
and inhibition. Whether it will be possible or not to distinguish between these two
schemes with specific experiments is a still debated issue, nonetheless they are thought
to be behind the genesis of brain oscillations in neocortex and in the hippocampus, at
least in the 20-80 Hz range (Isaacson and Scanziani, 2011), and they can both be modeled
using networks of integrate-and-fire neurons and exponential synapses (Borgers and
Kopell, 2005) (see Appendix B). Strong, slowly decaying inhibition plays a central role in
both models, making them difficult to study with the sole PRC method. Indeed, during
the last ten years, the PING framework has been increasingly employed to model
Gamma oscillations in sensory areas (Borgers and Kopell, 2005, 2008; Kilpatrick and
Ermentrout, 2011) and the hippocampus (Kopell et al., 2010; Borgers and Walker, 2013),
due to its computational simplicity and the biological plausibility of its parameters. A
population of pyramidal excitatory cells (PE), mainly found in middle layers (IV, V) of
sensory cortex and in the hippocampus, is mutually coupled to a smaller population of
fast spiking inhibitory interneurons (FS). An external driving current, that may
represent input from a distant brain area (or an adjacent column) to layer IV (Douglas
and Martin, 2004; Binzegger et al., 2009; Atencio and Schreiner, 2010), causes the PE to
start firing, sparsely since they are not synchronized a priori. When the proper set of
parameters is chosen, PE spikes reach FS cells and the latter also start firing, providing a
window of rather strong inhibition that prevents further PE spikes, at least until
inhibitory synaptic input has decayed. At that point almost all PE neurons are ready to
fire, so that the subsequent volley is quite synchronized, quickly prompting one more
inhibitory volley, and so on (Figure 5).
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Figure 5. PING network.

Schematics of the pyramidal interneuron network Gamma model (PING). The excitatory network
of pyramidal neurons (red circle) starts firing, eliciting a volley of spikes from the interneuron
population (blue circle), which silences the network until inhibition fades and the excitatory
population is ready to fire again.

Kopell and collaborators have extensively studied the different behaviors of
PING networks across a wide range of parameter values, with both numerical and
analytical tools. Gamma rhythm has been observed extensively in granular and
superficial layers in auditory cortex of macaque monkeys (Lakatos et al., 2005), and the
interplay between PE and FS giving rise to Gamma bursts has been observed in vivo
and in vitro (Bragin et al., 1995; Tiesinga and Sejnowski, 2009). We will therefore use the
PING model as our reference model for generating Gamma band oscillations in
neocortex.

After exploring in this Section the mechanisms that are responsible for the
generation of cortical rhythms within a single frequency band, let us now turn our
attention to models dealing with cross-frequency coupling (as described in Section
2.2.2), as they will turn out to be useful to understand the work of this thesis.

3.3 Nested brain rhythms
Starting from the results of previous Sections, we briefly review the most interesting
mechanistic models that produce CFC between two brain rhythms, phase-amplitude
coupling models in particular. From a computational standpoint, frequency couplings
can be classified according to: i) whether the cross-frequency perturbation is weak or
strong, relatively to the intrinsic coupling strength; ii) whether the influence is
temporally continuous or discrete and what is the size of the difference in time-scale
between the two rhythms; iii) whether the interaction is one-sided or mutual. As for
point i), the already mentioned plethora of synaptic connections provides room for both
weak and strong interactions. The works proposed in (Fontolan et al., 2013; Hyafil et al.,
2015) aim to build an analytical and computational model of Theta-Gamma interplay in
auditory cortex using neural networks models. During speech recognition, Theta
oscillations track the amplitude fluctuations in upcoming stimuli and reset their phase
in correspondence of syllabic boundaries. Theta fluctuations provide a strong and
continuous modulation to neurons firing in the Gamma range, whose frequency
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matches the phonemic time-scale (see Section 0). A weak Theta input would not be
sufficient to reset Gamma, whereas it is crucial to be able to realign the cycle of Gamma
neurons at the onset of a linguistically pertinent constituent, in order to maximize the
information encoded in Gamma spike patterns. However, the great majority of
theoretical studies focus on weak coupling, which is much easier to model using the
tools of perturbation theory (Ermentrout and Kopell, 1986; Mancilla et al., 2007; Ledoux
and Brunel, 2011). But what happens when the coupling is strong, i.e. when the
amplitude of the synaptic input coming from the slowest rhythm is comparable with the
membrane threshold value? Unfortunately, strong PAC has been analytically studied
only in the (quite limited) case of discrete pulsatile coupling (Bressloff and Coombes,
2000; Tort et al., 2007b; Vierling-Claassen and Kopell, 2009). A very interesting article by
Kopell and colleagues (Kopell et al., 2010) explores a Theta-Gamma PAC by modeling a
PING coupled with stellate cells in entorhinal cortex (which they identify as equivalent
to oriens lacunosum-molecular cells in the hippocampus — we will thus use the
abbreviation O-LM from now on). In fact, these cells might be involved in producing
Theta resonances due to the characteristic intrinsic currents they possess (White et al.,
2000; Rotstein et al., 2005). Using the PRC formalism extended to three cells networks,
Kopell and collaborators were able to draw the synchronization properties of two O-LM
cells mutually coupled to a fast spiking inhibitory basket cell, and showed that the
networks fires in the Theta frequency range when loaded with biophysically compatible
parameters (see Figure 6). For this scenario to occur, the two O-LM cells must fire first
and provide long (around 20 ms) lasting inhibition to the FS basket cell, which is the last
neuron to emit a spike within a network cycle and progressively synchronizes the two
O-LM neurons (for the full mathematical derivation see Kopell et al., 2010). Note that a
single O-LM neuron can actually generate a Theta rhythm, but two O-LM neurons
would not synchronize unless they receive inhibition from the FS cell. Although their
model is indeed appealing and their analytical understanding both inspiring and
intriguing, the existence of connections between O-LM and FS cells has still not been
reported anatomically or physiologically, as stated by the authors themselves. Instead,
to generate Theta oscillations in auditory cortex, as described in (Hyafil et al., 2015), we
opted for a modified version of the PING (Figure 6), where PE neurons are coupled to
slowly decaying inhibitory neurons like Martinotti cells, which are known to be
connected to the distal dendrites of pyramidal neurons throughout neocortex
(Silberberg and Markram, 2007a). We have also tested both models by comparing their
ability to reset their phase in correspondence of a syllabic boundary, i.e. a steep rise in
the amplitude of an external input, and we found that the Kopell model was much less
suited for this purpose than our proposed model. For what concerns the time-scales at
which the two oscillations operate, the PACs measured in auditory cortex involves a
slow and a high frequency rhythm whose periods are separated by roughly one order of
magnitude (e.g. for Theta-Gamma coupling in auditory cortex: Tyg~300-100 ms,
T,,~30- 10 ms, see Giraud and Poeppel, 2012 and Poeppel, 2014).
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Figure 6. Theta oscillations networks.

Computational models used to simulate Theta oscillations in the brain. A) Modified
Pyramidal Interneuron Gamma model used in (Hyafil et al., 2015), showing two separate modules
each for generating Gamma (top, red and blue) and Theta (bottom, green and orange) oscillations.
Within each of the two modules, a population of pyramidal cells (E) is connected to a population of
fast spiking inhibitory (I). When E cells start firing, they trigger inhibitory spikes in the I population
that prevents further firing in the E population until inhibition has faded away. Excitatory connections
from Theta module excitatory neurons to Gamma module pyramidal cells link the two networks
producing nesting. B) Model of hippocampal Theta oscillations introduced in (Kopell et al., 2010).
Theta oscillations are generated in the O-LM/I inhibitory loop, where I cells are crucial for the
synchronization of O-LM cells. The interaction with excitatory E cells further led to the origination of
the Gamma rhythm.

In addition to the computational results showed in the aforementioned article,
we explored the analytical properties of the network by considering a simplest version
of the model: a QIF excitatory neuron coupled to an instantaneous inhibitory synapse
(representing the FS inhibitory interneuron) and receiving slow sinusoidal input in the
Theta frequency range (Fontolan et al., 2013). The intriguing results of both models will
be discussed thoroughly later in this thesis.

4 Neural substrates of speech processing

They were, perhaps, the first people to understand that the Tower was chaos, that order
was chaos, and that language — the gift of tongues which Jahweh breathed into the
mouth of Adam — has a rebellious and wayward vitality compared to which the
foundations of the Pyramids are as dust.

Bruce Chatwin, The Songlines
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Language is perhaps the most unique of all the distinctive features of human beings. It
still represents a puzzle of astonishing complexity both for neuroscientists and linguists,
at both a high (e.g. grammar, syntax) and low level of description (e.g. transforming
incoming sounds into neuronal spikes for subsequent auditory perception). The work of
this thesis concerns the early, yet critical, low-level steps in the understanding of how
language is processed and represented in the human brain: the chunking of speech into
its primary constituents, i.e. syllables and phonemes. In physical terms, an uttered
sentence reaching the outer ear is nothing but a mechanical pressure wave, a flux on
energy traveling through the air medium. If we plot the amplitude of a speech
waveform we get a representation like that of Figure 7, where we can immediately spot
two concurring features: exceedingly fast fluctuations superimposed with slow global
modulations. How can the neural circuits extract useful information from such an
apparently simple source? To answer this question, in the next Section we will present a
brief overview of the auditory system and the computational models that can help us in
the understanding of its functioning.
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Figure 7. Speech waveform.

The amplitude of a speech waveform is plotted as a function of time. The envelope (i.e. low
frequency power fluctuations) is shown in red. Syllables are visible as strong bursts separated by
silence periods. Smaller scale constituents, such as phonemes, are almost indistinguishable.

4.1 The auditory pathway in a nutshell
When a sound wave reaches the outer ear, it first passes through the ear canal and then
reaches the tympanic membrane. Once there, it gets amplified and subsequently
transmitted to the cochlea by three tiny ossicles, the malleus, the incus and the stapes,
which globally act both as a bandpass filter and an amplifier. As a result, humans can
hear sounds in the 20 Hz to 20 kHz frequency range but are most sensitive in the 100-
10,000 Hz range with a peak around 3 kHz (Rosen and Howell, 2011). Unsurprisingly,
the frequency spectrum of human speech is comprised between 100 and 3000 Hz, i.e.
near the highest sensitivity peak of the human ear. Once in the cochlea, the speech
pressure wave travels in a biological fluid and provokes the motion of the basilar
membrane, whose changes are promptly sensed by a few thousands hair cells. The
basilar membrane does not move uniformly each time a sound wave is received;
instead, distinct wavelengths elicit perturbations at different locations of the membrane.
This anisotropy critically causes short wavelengths (i.e. high frequencies) to be more
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effectual in moving the membrane at its apical end, while long wavelengths (short
frequencies) are progressively more effectual towards the basal end. This simple
topographical organization of frequency representation in the cochlea is called tonotopy,
and is preserved, at least partially, across the entire auditory pathway from thalamus to
primary auditory cortex (Kanold et al., 2014).
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Figure 8. Auditory spectrogram of speech.

Morlet wavelet time-frequency decomposition (spectrogram) of a spoken sentence in French. The
obtained two-dimensional representation mimics the filtering performed by the human ear. The
color code represents power at a given time-frequency points.

Essentially, the cochlea decomposes an incoming sound wave in frequency bands, and,
by doing so, it expands the one-dimensional representation of Figure 7 into a two-
dimensional one, where the instantaneous amplitude is now computed at a given
frequency band (Figure 8). The time-frequency decomposed speech waveform, named
spectrogram, is further transmitted from hair cells to the auditory nerve in form of a
series of electric potentials. These voltage fluctuations activate the release of
neurotransmitters in the synaptic clefts, which separate the hair cells and the auditory
nerve fibers. These long fibers finally pass the auditory information, now transduced
into electrical impulses, to the cochlear nucleus, inside the brain stem. Cells in the
cochlear nucleus are connected to multiple nuclei belonging to the pons, which, in turn,
project to the inferior colliculus. The ascending auditory pathway culminates in the
medial geniculate body (MGB) of the thalamus, from which the information is finally
relayed to primary auditory cortex (A1, Broadmann area 41).

4.2 Physiology of the auditory system
Neocortex is the most recently evolved portion of cerebral cortex in mammals,
encompassing the areas assigned to the highest cognitive functions such as sensory
perception, consciousness, language production and comprehension, planning,
preparation of motor commands. Neocortex looks like a folded sheet made of six layers
of various thickness, density and cellular conformation. The relatively constant number
of neurons per millimeter found in neocortex (about 147000 in 1 mm?2) lead many
researchers to the conviction that the distinct sensory systems could have evolved to
having similar organizational structures (Rockel et al., 1980; Carlo and Stevens, 2013).
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However, although neocortical regions do appear to share a number of basic principles
in the spatial arrangement of cells and in connectivity patterns, areas corresponding to
different sensory cortices are indeed quite dissimilar with respect to both physiology
and connectivity (Herculano-Houzel et al., 2008), auditory cortex in particular (Read et
al., 2002). In non-human primates, A1l is located in the superior temporal region of the
brain and is part of the core region, a group of three adjacent areas that receive
independent inputs from the MGB. These areas then project to a set of seven areas
forming the belt region, which in turn sends information out to areas in the parabelt
region (Kaas et al., 1999). Both the belt and the parabelt regions also receive feebler
input from the thalamic MGB. The common view at the moment is that the
spectrotemporal features are extracted in the core region and then integrated in the belt
and parabelt regions to give rise to the perceived representations of auditory objects.
Detailed functional analysis in humans has not been performed yet, due experimental
limitations. However, a primary auditory region has been identified along the Heschl’s
gyrus (HG), surrounded by a group of non-primary areas that could potentially be
analogous to the belt and parabelt regions in non-human primates (Figure 9). Since our
work aims at modeling the extraction of speech features, we will limit the analysis of
this Section to Al; we start by looking at the laminar organization of Al as it has been
investigated in various mammals: rodents, cats and non-human primates.

We know that the auditory input signal is mainly transmitted from the thalamic
MGB to pyramidal cells inside layers IIl and IV (named granular layer because of the
characteristic appearance of layer IV in visual cortex, as a consequence of the high
density of pyramidal neurons) of primary auditory cortex, preserving the spatial
tonotopy observed in the cochlea and along the thalamic pathway (Hackett, 2011). Other
layers receive non-tonotopic input from other thalamic nuclei, being involved in the
representation of extra dimensions of sound (e.g. spatial localization of sources). Layer
III cells project to Al in the opposite hemisphere (Code and Winer, 1985), to
supragranular (I and II) and infragranular (V and VI) layers with slightly different
delays (Atencio and Schreiner, 2010). Although many complex interactions arise
between layers within one brain area or across different areas, a simplified pictures
shows that infragranular layers of hierarchically higher areas are mainly responsible for
feedback projections to supragranular layers of lower areas, while the latter convey
feedforward information to granular layers of higher areas (Read et al., 2002; Hackett,
2011). One may also wonder how far these connections extend horizontally in space,
within one layer (these connections are termed lateral) or across different layers. More
than fifty years ago, the group of Vernon Mountcastle found that neocortex appears to
be organized into cylindrical, vertically arranged cortical mini-columns of about 30-90
um of diameter and 0.5-2 mm of height (Mountcastle, 1997). Minicolumns have been
suggested to be a basic computational unit of neocortex, with repeated connections
patterns both across layers and between different columns. The size and shape do vary
significantly depending on the area, reflecting distinct functional purposes and
anatomical changes. In visual cortex, neurons that lie inside the same minicolumn, i.e.
that share a similar orientation preference, tend to synchronize at Gamma frequency
(Singer, 2013), making an interesting link to brain rhythms. Mini-columns are further
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arranged into bigger columns, i.e. ensembles of mini-columns that are activated at the
same time to perform a given processing step.

4.3 Computational models of the auditory system

Every single stage of auditory processing, as described in the two previous Sections, has
been the object of detailed computational studies (Meddis, 2010). Some of those models
require an extremely high level of complexity given the intricate structure of those areas,
the cochlear nucleolus above all. A different kind of approach, more interesting in our
opinion, was used in (Chi et al., 2005), where the authors avoided the overwhelming
complexity of each single stage model and, instead, based their model on a careful
balance of psychoacoustic results and essential neurophysiological findings. The
computational model of Chi and collaborators can account for the three main
dimensions that make up a sound, which are detected at the early and central stages of
the auditory pathway: frequency, temporal and spectro-temporal modulations. The
model is made of two parts, a subcortical portion addressing the pathway going from
the cochlea to the thalamus, and an early cortical portion simulating Al neurons. The
first tract reconstructs the cochlear time-frequency decomposition plus the
aforementioned bandpass filter and selective increase of relevant frequencies. Once the
auditory spectrogram is formed in the subcortical part, the cortical segment detects the
three modulations modes by modeling neurons according to their spectro-temporal
receptive field (STRF), i.e. the two dimensional maps showing the firing rate of a
particular neuron as a function of frequency and time occurrence (Meddis, 2010). In the
end, the output of the model by Chi and colleagues can be seen as a complex wavelet
time-frequency decomposition of auditory inputs (Chi et al., 2005). In our effort to build
a model of speech parsing we used a slightly modified version of this model in order to
shape the early and central stage auditory pathway, whose output serves as the input to
the cortical network of nested rhythms we built (see Hyafil et al., 2015).

23



Mongolian gerbil Guinea pig

Figure 9. Organization of auditory cortex across different mammals’ species.

Identification of auditory cortex regions across six species of mammals. Primary auditory fields are
shaded in dark gray, secondary regions appear in white. In humans, primary auditory cortex
covers the entire Broadmann area 41 and part of Broadmann area 42. In species where they have
been measured, tonotopic gradients are also visible (letter H for high frequencies, letter L for low
frequencies). From (Hackett, 2011).

4.4 Speech representation and processing in the brain
Although it would be of absolute interest to investigate the nature of speech
representation in the human brain (whether for example the auditory system became
progressively tuned to match the speech utterances produced in the vocal tract, or the
motor system adapted to the frequency range of human hearing), speech is indeed an
enormously complex topic; we will hence try to restrict our analysis to the essentials.
First of all, we know that the fundamental units of speech, phonemes, are encoded in
relatively sparse cortical neural populations along the superior temporal gyrus (STG)
(Mesgarani et al., 2014), and that they are spatially clustered depending on their
spectrotemporal features. Furthermore, perceived speech can be reconstructed from the
filtered spiking activity of these populations, recorded intracranially in humans (Pasley
et al., 2012). However, while the categorization of speech constituents has been recorded
with a rather high level a detail, how constituents are actually identified and processed
by neural networks is not clear at all. Traditionally, the regions involved in speech
production and perception were thought to be limited to Broca’s and Wernicke’s area
respectively, and the left hemisphere was considered to be strongly dominant in
language and speech processing. Studies performed in the last fifteen years have
progressively overturned this century-old viewpoint, by showing that production and
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perception of language are much more dispersed functions, implicating several areas of
both cerebral hemispheres (Schirmer et al., 2012; Poeppel, 2014).

The great surge of interest in brain oscillations and their remarkable
correspondence to speech timescales lead to what is perhaps the most interesting
novelty of auditory research in recent years: the specific role of brain rhythm during the
processing of speech (Giraud and Poeppel, 2012). Temporal fluctuations at several
distinct timescales are indeed a distinctive feature of speech waveforms (Rosen, 1992),
with the information about intonation occurring in the 500-2000 ms range, words in the
300-500 ms range, syllables 120-300 ms and phonemes 20-80 ms. How the human brain
can detect and identify these attributes is still not understood, but evidence has emerged
that coherent brain oscillations seem related to the processing of speech characteristics
(Poeppel, 2003, 2014; Giraud and Poeppel, 2012). Delta (<3 Hz) Theta (3-8 Hz) and
Gamma (30-100 Hz) waves have been now recorded extensively during speech
recognition, both with intracranial and scalp recording techniques. In particular, slow
Delta oscillations are associated with prosody or any rhythmic information contained in
perceived sounds (Ding and Simon, 2014). Instead, Theta oscillations have been shown
to track the fluctuations in the speech envelope (i.e. the low (3-10 Hz) frequency
variations contained in the speech waveform) by resetting their phase upon the
presence of syllabic edges (Luo and Poeppel, 2007, 2012; Howard and Poeppel, 2012;
Gross et al., 2013; Henry et al., 2014). To further support this claim, the steepness of the
rise in power at syllabic edges has been found to positively correlate with the size of the
brain entrainment to the envelope fluctuations (Doelling et al., 2014). In fact, the
envelope frequency range (1-10 Hz) appears to be crucial for the comprehension of
speech: experiments demonstrated that the intelligibility of a sentence is greatly reduced
(if not destroyed) when 1-7 Hz fluctuations are filtered out of speech waveforms (Elliott
and Theunissen, 2009), and, at the same time, phase-locking within the same band is
improved if speech is properly understood (Peelle et al., 2013). Work from Ahissar and
collaborators (Ahissar et al., 2001) also showed that speech comprehension correlates
with the brain capacity to track the low frequency envelope (0-20 Hz), and that both
drop when speech is time-compressed by a factor bigger than three, which would
correspond to a syllabic rate higher than about 9 Hz. Syllabic rhythmicity is so
important that the human brain is capable of understanding speech even in very much
degraded conditions, if syllabic periodicity is not fully destroyed (Ghitza and
Greenberg, 2009). With this amount of evidences, the entrainment of intrinsic Theta
waves can be a viable and effective mechanism to detect the envelope dynamics, and
hence to chunk incoming speech into subunits of about 110-300 ms, i.e. the average
syllabic temporal duration (Shamir et al., 2009; Ghitza, 2011). Concurrently, slow
fluctuations in speech also overlap with the slow temporal dynamics of Gamma power
(Nourski et al., 2009; Pasley et al., 2012; Kubanek et al., 2013; Zion Golumbic et al., 2013),
suggesting that Gamma activity might reflect the encoding of fine-grained phonemic
features enclosed within the syllabic boundaries. Furthermore, both intracortical and
scalp human recordings in auditory regions of subjects that were listening to speech
(Nourski et al., 2009; Giraud and Poeppel, 2012; Morillon et al., 2012; Gross et al., 2013)
reported significant cross-frequency coupling between Theta and Gamma bands (Figure

25



10). Based on these experimental facts, Ghitza and collaborators proposed a conceptual
model to illustrative a potential role of brain rhythms in the parsing of speech (Ghitza,
2011). While previous models proceed by first recognizing and categorizing phonemes
by template matching (Stevens, 2005), the claim in Ghitza’s model is radically different:
syllables are decoded as long as they are enclosed inside a time frame defined through
an internal periodic clock running in the Theta frequency range (Figure 11). A clock
ticking in the Beta frequency range (~20 Hz), coupled to the Theta rhythm so that its
frequency is a multiple of Theta frequency, tracks dyadic? content, and an additional
faster-paced clock potentially parses phonemic spectrotemporal features within the
Gamma frequency band. Template matching is performed at each stage, from syllables
to phonemes. A key requirement for this model to be able to explain observed
behavioral results is that the Theta clock has to align to the beginning of syllables, at
least to some extent. When the alignment is lost, a Theta time frame might fall in the
middle of a syllable, making the decoding much harder if not impossible.
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Figure 10. Theta-Gamma frequency coupling in auditory cortex.

Intracranial EEG data from epileptic human patients. A) Spectrogram of brain activity in human
primary auditory cortex during listening of speech. Time-frequency decomposition had been
computed using complex Morlet wavelets and a baseline correction had been applied using a
portion of the prestimulus period. Activation in the Theta (3-8 Hz) and Gamma (30-120 Hz)
frequency bands is visible in red. B) Phase-amplitude coupling between low and high frequency
rhythms in human primary auditory cortex, measured using circular-to-linear correlation.
Significant coupling occurs between the phase of 2-6 Hz Theta oscillations and the amplitude of 20-
80 Hz Gamma oscillations.

4.5 Multiplexing and oscillations
The results discussed in the previous Section lead to the hypothesis that acoustic

2 Dyadic units were first defined by (Peterson et al., 1958) as i) containing
parts of two phonemes with their overlapping spectrotemporal features
somewhere in the middle; ii) having its beginning and ending at the phonetically
most stable position of each phoneme.

26



features can be encoded using distinct, although coupled, cortical rhythms, allowing the
auditory hierarchy to achieve some kind of multiplexing, i.e. to make different areas
communicate with each other by using a number of independent frequency channels
but only a single transmission line (i.e., in neural terms, a single readout population).
Multiplexing is an appealing strategy for the brain: it would favor interaereal
communication and it could optimize the encoding/decoding of features pertaining to
different stimuli (Akam and Kullmann, 2010, 2014; King and Walker, 2012). Recently, it
has been proposed that the auditory system could use a multiplexed transmission line
in order to segment speech, formed by a hierarchy of oscillators coupled together
(Ghitza, 2011; Giraud and Poeppel, 2012; Gross et al., 2013). As a matter of fact, a
potential explanation of the observed Theta-Gamma CFC in auditory cortex (see Figures
10 and 11) would be that Theta oscillations are able to entrain to the syllabic fluctuations
of incoming speech, thereby providing a window of opportunity for Gamma neurons to
fire and transmit sensory information to areas higher in the auditory hierarchy, in a
bottom-up fashion (Giraud and Poeppel, 2012). Such a scenario would imply that
stimulus information is passed to upper regions in a multiplexed manner, at least at the
syllabic and phonemic timescales. From these hypotheses, we were the first to construct
a computational implementation of Theta-Gamma CFC in auditory cortex using
neuronal networks, in order to verify the advantages of such neural architecture and
provide a set of useful and testable predictions for future experiments (Hyafil et al.,
2015). The important implications of our work are discussed later in this thesis. Let us
now review a set of fundamental concepts regarding the interactions between distinct
areas of the brain and the potential functions underpinning those mechanisms, since
they will be important to introduce our work on frequency-specific communication
channels (Fontolan et al., 2014).
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Figure 11. Speech waveform and its chunking by cortical rhythms.

Syllabic (red) and phonemic (blue) components are both represented in the speech waveform.
Cortical oscillations in the Theta and Gamma frequency bands respectively match the timescales of
syllables and phonemes, hence constituting a potential mechanism to parse the speech signal into
its constituents.
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5 Information flows in sensory cortex

In one of his gloomier moments Pascal said that all man’s unhappiness stemmed from a
single cause, his inability to remain quietly in a single room. “Notre nature”, he wrote,
“est dans le mouvement... La seule chose qui nous console de nos miséres est le
divertissement”. Diversion. Distraction. Fantasy. Change of fashion, food, love and
landscape. We need them as the air we breathe. Without change our brains and bodies rot.
The man who sits quietly in a shattered room is likely to be mad, tortured by
hallucinations and introspection.

Bruce Chatwin, Anatomy of Restlessness

At the dawn of theoretical neuroscience, scientists used to think of the brain as a passive
machine, a collection of sophisticated filters capable to extract and interpret the
information coming from the surrounding world, with the primary aim of prolonging
survival and ensuring abundant and healthy offspring. Although this vision has proven
extremely useful to explain some of the animal and human behaviors and the
corresponding brain responses, it does not appear to be the most parsimonious and
flexible way of operating for a device whose target is to link the perception of sensations
with actions (Friston, 2010). There is evidence that the brain anticipates future events
such as upcoming sensory stimuli, and adapts its reactions accordingly (Bar, 2007). To
use the words of Daniel Dennett: “A mind is fundamentally an anticipator, an expectation
generator”3. Intuitively, being able to predict stimuli and contexts from the environment
constitutes an invaluable advantage for survival: it allows for optimizing actions with
respect to the complexity of the environment, anticipating dangerous situations and
maximizing the responses to relevant, unexpected events. Hence, the brain needs to
carefully balance and integrate together the information flowing from peripheral
sensory systems to cognitive areas (bottom-up flow) and the predictions traveling from
cognitive areas to sensory cortices (top-down flow).

One of the most popular and interesting theories on prediction has been
advanced by David Mumford about two decades ago (Mumford, 1992). The theory, that
has been successively repurposed by other researchers (Rao and Ballard, 1999; Friston,
2002), is called predictive coding and revolves around two principles: i) it allows to link
cognitive perception with passive sensing, by inferring the most probable causes of
incoming stimuli (as first proposed by Helmholtz4) and ii) it actively maintains a model
of the world, based on previous experience and future expectations, that must be plastic
enough to be constantly updated by new experiences (in healthy individuals). In this
chapter we will review previous models of predictions, then introduce the predictive
coding theory and highlight the role of oscillations in relation to top-down vs. bottom-
up communication.

3 Dennet, D., 1996, Kinds of minds: toward an understanding of consciousness, Basic
books.

4 Helmbholtz, H., 1860/1962, Handbuch der physiologischen optik (ed. ]. P. C.
Southall), vol. 3. New York: Dover.
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5.1 The connectionist approach

A connectionist model typically consists in a network of interconnected minimal
processing units, often displaying binary values [0,1]. The units are interpreted as
simplified neurons, mutually connected by adjustable weighted links (Amari, 1972). The
output of such basic neuron is computed as some sort of weighted sum of its inputs,
usually thresholded or modulated by a nonlinear function (e.g. a sigmoid). The value of
the output after thresholding is called the state (or activation) of the unit, which, in turn,
might constitute part of the weighted input to other units. Surprisingly, networks built
out of these elementary units are able to capture a remarkable number of features of
high order cognitive processes, such as memory (Hopfield, 1982), language (Norris,
1994) and vision (Feldman, 1985). Although these artificial networks are generally
employed to describe bottom-up processes, they have been also applied to try to
understand and explain prediction or anticipation. To be able to form any kind of useful
prediction, the brain must be able to learn from previous experience, which in the
connectionist paradigm translates into allowing processed stimuli to actively modify the
distribution of the weights to minimize the mismatch between the network prediction
and the actual stimulus. Irrespective of the specific error minimization principle used in
the different instances of connectionist models, learning in these network has to be
supervised or semi-supervised. Learning in a supervised fashion means that an external
source is needed to train the network, by knowing in advance the desired target output
(i.e. by guiding the weights modifications towards the correct input-output associations
using a subset of all input patterns). Unfortunately this approach has two main
limitations in relation to predictions: first, these networks must know in advance many
of the causes of incoming sensory input in order to be able to learn a set of appropriate
input-output mappings; second, they often need a vast training corpus to reach
reasonable performances, making them too slow or fragile to be useful to model
predictive processes in the brain.

5.2 Predictive coding
To overcome the drawbacks of connectionist models David Mumford proposed a
different approach based on what is known as the predictive coding model (Mumford,
1992). In this framework, the error that is minimized is not that between the network
output and the target pattern, but the one between the actual observed input and the
prediction from the network. This way, in predictive coding, the network is able to learn
the generating causes behind the observed sensory patterns (i.e. updates its internal
model of the world) by i) extracting the statistical regularities of the inputs; ii)
comparing the predictions formed on the basis of previous experiences with the
upcoming input signal. To translate this scheme into a potential cortical
implementation, Mumford assumed that the “abstract” information regarding the world
causes was retained in some central brain area, which in turn sent the information about
the most expected signal to some lower area (top-down flow). The local circuits within
each area computed the difference between the sensory input and predictions coming
from upper areas (the prediction-error) and transmitted this information back to upper
stages (bottom-up flow), where the prediction signal is updated accordingly. In the
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Mumford model not only the predictive step and the update step occur at the same
time, in contrast to the connectionist approach where a training and a test period are
needed, but the learning process is also completely unsupervised (Friston, 2002). After
Mumford’s proposal, this approach has been used to successfully model extra-classical
receptive fields in visual cortex (Rao and Ballard, 1999) and extended to a whole
hierarchy of cortical stages, each one passing the predictive information to the next one
in a top-down fashion, and getting back the prediction-error signal in a bottom-up
fashion (Friston, 2005; Kiebel et al., 2008). Multiple studies have then found evidence for
predictive coding during cortical processing of information, under paradigms as diverse
as mismatch negativity (Wacongne et al., 2011; Winkler and Czigler, 2011), spoken word
recognition (Gagnepain et al., 2012), priming (Recasens et al., 2014), visual adaptation to
novel stimuli (Hosoya et al., 2005) and repetition suppression (Costa-Faidella et al.,
2011). We refer the interested reader to (Clark, 2013) for a comprehensive and updated
review on the subject.

Beyond the general idea of predictive coding, many implementations are being
considered by researchers (Friston, 2003, 2008). A promising approach, partially
supported by evidence from cortical connectivity studies (Markov and Kennedy, 2013),
is that of Bayesian probabilistic inference and generative models (Dayan et al., 1995;
Friston, 2002, 2003). A generative model is a way of reconstructing the sensory input
from the representation of its causes that is stored in the network. In practice, a
generative model performs the inverse of inferring the causes from sensory inputs: it
generates a model of the observed sensory input starting from the most probable
underlying cause. Consider as an example the shadow produced by an animal crossing
the street under the lights of a car: to infer to which animal belongs the perceived
shadow, a generative model would generate a copy of the shadow caused by the animal
we encountered more often in our past experience. The predicted shadow is then
compared to the observed shadow, and the corresponding prediction-error signal is
produced, depending on whether the two patterns match or not. Cortical circuits might
build similar predictions based on generative models and update the parameters of the
model by means of Bayesian probabilistic inference (Friston, 2005; Bastos et al., 2012).
Indeed, it is worth noting that a purely feedforward network cannot perform predictive
coding: in fact backward connections from lower to upper stages are crucial for the
update of the internal model (Friston, 2002).

Bastos and collaborators also suggest a possible spatial scale within which the
processes of predictive coding might be integrated: cortical macrocolumns (see Section
4.2). These columns could be the fundamental units of cortical microcircuits for
predictive coding: in fact, each column is computationally segregated from other
columns belonging to the same brain area (ie. is capable to accomplish the full
computational duties assigned to its stage), but interacts with columns in other brain
areas. In particular, although the physiological organization of cortical is all but simple,
previous computational models (Mumford, 1992; Rao and Ballard, 1999; Bastos et al.,
2012) putatively assigned deep layers of the column to the computation of predictions,
then transmitted via top-down pathways to lower areas. Similarly, cortical superficial
layers are associated with bottom-up transmission of prediction-error, i.e. the difference
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between the observed and the predicted input. Bastos and colleagues also suggest that
neurons in deep layers should display lower powers at high frequencies, due to the
longer window of integration needed to form predictions (Bastos et al., 2012). This could
indeed explain the spectral differences observed across layers (see next Section), and,
together with the mapping of cortical layers to communication mechanisms, suggests a
strong link with cortical oscillations, as we shall see here below.

5.3 Oscillations and information passing

As we have seen in Section 3, brain rhythms are a consequence of the interplay among
neurons, whose dynamics allows for the creation of transient synchronized assemblies.
Different rhythms are created by distinct neuronal networks: not only their neurons
have distinct electrical properties, but they are also located in different layers within the
cortical sheet: Gamma oscillations were shown to be generated in superficial layers
(IT/III) of neocortex, while slower rhythms, like Beta (13-30 Hz), originate in deep layers
(IV/V) (Roopun et al., 2008b; Wang, 2010; Buffalo et al., 2011; Cannon et al., 2014). In
addition, several studies have demonstrated that the spectral cortical response to
sensory inputs is strongly affected by top-down cognitive control, such as attention and
predictions (Wang, 2010; Bosman et al., 2012). Among these studies, those on speech
perception are particularly relevant, since frequency bands appear to particularly
affected by top-down mechanisms during the listening of speech (Arnal and Giraud,
2012; Ding and Simon, 2012; Gagnepain et al., 2012; Zion Golumbic et al., 2013; Arnal et
al., 2014).

These two facts, the cortical separation of rhythm generators and the evidence
that alterations in the frequency spectrum seem to correlate with top-down cognitive
tasks, suggest a potential fundamental role for oscillations as powerful communication
channels to convey information across different brain areas (Buschman and Miller, 2007;
Wang, 2010; Arnal and Giraud, 2012). On the one hand it is well established that
Gamma oscillations are strongly related to sensory processing (Buzsaki and Wang,
2012), even though the directionality of the flow has been established only recently
(Bastos et al., 2014; Fontolan et al., 2014; van Kerkoerle et al., 2014). On the other hand,
Beta oscillations, although classically associated with sensorimotor planning and
execution, have been recently associated with top-down modulations and predictions in
sensory cortices, thanks to longer conduction delays that could maintain synchrony over
larger spatial scales and thus provide a long integration window, as needed to form
predictions (Engel and Fries, 2010). According to this hypothesis, Beta could signal the
maintenance of the current internal representation (the status quo) that is generated in
high-level cortical areas. Consequently, Beta power would be suppressed in presence of
a novel, engaging input capable of modifying the status quo, as it is actually observed
experimentally (see Engel and Fries, 2010). An interesting study by Arnal and
collaborators (Arnal et al., 2011), which has investigated the audiovisual integration of
speech with MEG recordings, highlighted the significant alterations in the frequency
spectrum provoked by mismatching audio and visual inputs. Essentially, the authors
observed stronger cross-frequency coupling between Beta and Gamma rhythms in the
superior temporal sulcus, together with enhanced Gamma power in auditory and visual
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cortex, when the visual input was incongruent to the auditory input. Hence, higher
Gamma amplitude could underlie the computation of prediction-error, whereas higher
Beta-Gamma PAC might signal a change in the status quo and the subsequent
construction of a “new” prediction, that would solve the incongruity in favor of either
the auditory or the visual sensory channels (Arnal and Giraud, 2012).

5.4 Summary of hypotheses
Although their functional role has not been elucidated yet, brain oscillations appear to
be ubiquitous in the mammalian brain. Gamma oscillations (30-100 Hz) in neocortex
have been associated with the processing of sensory inputs, while slower rhythms like
Theta (3-8 Hz) have been related to various aspects of cognitive processes like working
memory or the modulation of sensory and motor signals. Experimental evidence
showed that oscillations at separate frequency bands are nested, i.e. they are linked
through phase-amplitude coupling, in many sensory areas. This is particularly true in
the auditory cortex during speech perception. In fact, to capture the many different
relevant components of speech (syllables, phonemes), the brain must be able to parse
the speech signal over these different timescales at the same time. A network of nested
theta-gamma rhythms could accomplish this task, given the matching of theta and
gamma frequency with syllabic and phonemic time-scale respectively (Giraud and
Poeppel, 2012). These hypotheses were tested in Articles 1 (Hyafil et al., 2015) and 2
(Fontolan et al., 2013).

In addition to the processing of bottom-up sensory information, the brain is also
trying to predict and anticipate future events, according to a recent theory of brain
functioning called predictive coding. In fact, partial evidence shows that the central neural
system minimizes its reaction to environmental stimuli by predicting likely events, and
inferring their most probable causes (Friston, 2005). This mechanism ensures that
reactions are appropriate, i.e. maximal for unexpected events and minimal to frequent
ones. Functionally, predictive coding is a possible realization of the anticipatory
function of the brain. Practically, it states that the difference between top-down
predictions and bottom-up sensory information is assessed at each processing stage (i.e.
brain area), possibly within each single cortical column scale, so that only the error
signal (i.e. the magnitude of the mismatch) is further propagated up the cortical
hierarchy. It has been then conjectured that top-down and bottom-up information could
be transmitted throughout the sensory hierarchy via distinct frequency channels: in the
Beta and Gamma band, respectively (Arnal and Giraud, 2012). In Article 3 (Fontolan et
al., 2014) we tested this theory using a set of iEEG recordings in human subjects.

6 Description of the articles

6.1 Article 1: Speech encoding by coupled cortical theta and gamma
oscillations

Alexandre Hyafil, Lorenzo Fontolan, Claire Kabdebon, Boris Gutkin and Anne-Lise
Giraud
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eLife, in press

Contribution to the article: Conception and design of the model; Analysis and
interpretation of data and results; Drafted and revised the manuscript.

6.1.1 Summary of results

In this study we created a neural network model of the microcircuits that, putatively,
generate Theta and Gamma oscillations inside auditory cortex. Each rhythm arises from
a network of mutually interconnected excitatory and inhibitory quadratic integrate-and-
fire neurons (PING). The excitatory neuronal population, which simulates pyramidal
cortical neurons, starts firing upon receiving the spectrogram of a spoken sentence,
processed by a state-of-the-art cochlear model. Through a number of excitatory
synapses, spikes from pyramidal neurons activate the population of inhibitory
interneurons. Inhibition then reaches pyramidal neurons, creating a refractory period
during which inhibition prevents excitatory neurons from reaching the spiking
threshold. The two PING-like networks are then connected to reproduce phase-
amplitude coupling. We tested the model capability to chunk and extract speech
constituents using many different measures on the standard Texas Instruments &
Massachusetts Institute of Technology (TIMIT) speech corpus. We showed that the
Theta-Gamma network performs as well as the best offline methods when tested over
the tracking of syllabic boundaries, and that syllabic constituent can be recognized and
classified using spiking activity of Gamma excitatory neurons. Crucially, the Theta-
Gamma model performed better than control models where i) the connection between
the two rhythms was cut and ii) when the Theta network receives no speech input. In
Article 2 we focused on the synchronization properties of network analogous to the one
we used in Article 1, employing the most advanced mathematical tools to analyze the
different dynamical regimes arising in the parameter space.

6.2 Article 2: Analytical Insights on Theta-Gamma Coupled Neural
Oscillators

Lorenzo Fontolan, Maciej Krupa, Alexandre Hyafil and Boris Gutkin
Journal of Mathematical Neuroscience (2013) 3:16

Contribution to the article: Conception and design of the model; Analysis and
interpretation of data and results; Drafted and revised the manuscript.

6.2.1 Summary of results
We considered here a simple mathematical model of a fast spiking network (i.e. firing in
the Gamma frequency band, 30 - 100 Hz) modulated by a slow periodic input (i.e.
operating in the Delta-to-Theta frequency range, 1-8 Hz). In particular, we connected a
single Excitatory Gamma (GE) neuron, modeled as a QIF, to an excitatory sinusoidal
input, whose natural frequency lies in the Theta band. The GE neuron also participates
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in a Pyramidal Interneuron Network Gamma (PING) rhythm, although in our case the
inhibitory neuron is instantaneously enslaved to the excitatory cell, meaning that every
excitatory spike immediately prompts a virtually simultaneous inhibitory spike. We
found that that this network can work in two distinct regimes (which we have named
excitable and oscillatory), which respond in rather different ways to the Theta input. In
the excitable case the GE neuron remains silent at troughs of Theta rhythm and then
starts firing almost immediately when Theta input has reached a certain threshold. On
the contrary, in the oscillator case the GE cell always fires, but its frequency of spikes is
modulated by the phase of Theta. For both regimes, we provided analytical and
numerical solutions to compute the time-to-first spike at the beginning of a Theta period
and the average number of Gamma spikes inside one Theta cycle.

6.3 Article 3: The contribution of frequency-specific activity to hierarchical
information processing in the human auditory cortex

Lorenzo Fontolan*, Benjamin Morillon*, Catherine Liegeois-Chauvel, Anne-Lise Giraud
*equal contributions
Nature Communications (2014) 5:4694

Contribution to the article: Analysis and interpretation of data and results; Drafted and
revised the manuscript.

6.3.1 Summary of results

With the aim of exploring the frequency-specific content of information passing in
auditory cortex, we investigated the directional influence in the frequency domain
between Al and associative auditory cortex (AAC) in epileptic patients that were
recorded intracranially while they were listening to speech. We were able to identify the
frequency channels of top-down and bottom-up communications during speech
perception, being, respectively, Beta and Gamma bands, using circular-to-linear
correlation to measure phase-amplitude coupling and Granger causality to reveal causal
patterns between Al and AAC at a specific frequency, the same for both areas. Lastly,
we found that T-D and B-U causal patterns fluctuate over time, i.e. windows of
prevalent T-D influence alternate with windows of B-U influence at a rate of about 2-3
Hz. This suggests that multiplexing does not occur simultaneously but in temporally
distinct segments.

7 Discussion

7.1 Foreword
Brain oscillations have been recorded in thousands of experiments in humans and in
more than a dozen animal models, throughout many different brain states and
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behavioral tasks. Recent efforts were aimed at revealing the potential role of oscillations
in functions as diverse as the mapping of spatial locations (Buzsaki and Draguhn, 2004),
facilitation of input selection (Hutcheon and Yarom, 2000; Akam and Kullmann, 2010),
coordination of distant brain areas (Fries, 2005; Womelsdorf et al., 2007), binding of
perceptual features (Engel et al., 2001), formation and persistence of memories (Jensen
and Lisman, 2005; Axmacher et al., 2006), dynamics of synaptic plasticity (Bukalo et al.,
2013), or the execution of sensory-motor functions (Schoffelen et al., 2005). Still,
conclusive evidence on whether oscillations in cerebral cortex a mere epiphenomenon or
a useful computational strategy are that allows the brain to better perform some specific
classes of tasks is currently missing. In order to unravel the “cortical oscillations
mystery” we must be able to answer a number of compelling questions that arose in
past years. The work of this thesis is an attempt to find the answer to some of those
questions. With our computational and analytical work we tackled two questions: i)
linking oscillations to a specific computational function (in our case in the auditory
cortex) and ii) demonstrating that a hierarchy of oscillations is capable of enhancing the
encoded stimulus information during speech processing, as compared to control
conditions. We discuss the implications of this first part of our work in Section 7.2. On
the other hand, the analysis of human intracranial recordings allowed us to establish the
frequency content of the information flow within the auditory hierarchy and to uncover
its temporal dynamics. The consequences of our experimental results are examined in
Section 7.3.

7.2 Modeling speech processing in auditory cortex
Speech signal is an exceptionally attractive sensory stimulus to neuroscientists, given its
rich spectrotemporal contents where features are encoded at several distinct timescales.
Even more, speech is particularly suited for testing the contribution of brain oscillations
in sensory perception, thanks to the quasi-periodic structure of its constituents.
Nevertheless, speech perception is all but a simple matter: there seems to be no easy
mapping between the continuous acoustic waveform and the perceived linguistic units
such as abstract phonological representations, which have been found to be represented
and categorized in the human brain (Mesgarani et al., 2014). Despite this complexity, the
fact that there exist very few neural models of speech perception remains undoubtedly
striking. On one side, a number of psycholinguistic and cognitive models of speech have
been proposed. Among the first influential models it is worth mentioning the motor
theory, advanced by Alvin Liberman and collaborators (Liberman et al., 1967; Liberman
and Mattingly, 1985), that linked perceived phonemes to the articulatory movements of
the vocal tract. The motor theory had the merit of uncovering the strong mapping
between phonemes and the underlying speaker’s gestures. However, its initial claim
that speech production and perception share a unified and innate representation has
been refuted by subsequent findings, beside the various perceptual effects that the
model cannot account for. The attention of modelers then shifted to the apparent
acoustic invariance of speech, in the attempt to find a set of invariant spectral properties
that could lead to categorization of phonemes. Two interesting connectionist models
attempted this approach: TRACE (McClelland and Elman, 1986) and Shortlist (Norris,
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1994), which reached fairly good performances in recognizing words. Both these models
are essentially based on multilayer neural networks, where the bottom layer encodes a
number of features that are believed to be important for phonemic categorization, while
nodes in the two upper layers correspond to phonemes and words, respectively. The
main limitation of these models lies in the fact that the tuning of neural units to the
phonemic set has to be imposed artificially, since brain recordings and behavioral
results do not seem to suggest that phonemic spectral features can uniquely determine
the classification of phonemes (Poeppel and Monahan, 2008). Although still highly
debated, the key turning point came from results on how the brain encodes the temporal
modulations of speech waveforms (Greenberg and Ainsworth, 2006). In fact, the
fundamental sources of acoustic variability in the waveform all involve some kind of
temporal transformation: i) variability in spectral modulations, ii) variability in the
duration, iii) stretching or compression of acoustic subparts within speech constituents.
Notably, brain oscillations have the ability to quickly adapt to temporal changes, a claim
that is supported by the experimental evidence we reviewed in Sections 4.4 and 4.5.
While there is now a relatively large corpus of experimental evidences linking speech
and oscillations, only the TEMPO model of Ghitza and colleagues (Ghitza and
Greenberg, 2009; Shamir et al., 2009) has claimed a role for brain oscillations in the
processing of speech. Our paper (Hyafil et al, 2015) is the first to propose a
biophysically plausible, although much simplified, cortical circuit, making use of
realistic neuronal networks to generate the rhythmic patterns observed in auditory
cortex during speech perception. Concerning the fast rhythm, we implemented a set of
biophysical parameters and connectivity structure, based on the PING model, that
match the experimental values of Gamma rhythm in sensory cortices, (Cardin et al.,
2009; Vierling-Claassen and Cardin, 2010), in particular in the auditory cortex (Nourski
et al., 2009). It is less clear how slow frequency oscillations such as Theta are generated
in cortical microcircuits, albeit having been extensively recorded in human auditory
cortex both intracranially and from the scalp (Ahissar et al., 2001; Luo and Poeppel,
2007; Morillon et al., 2012). Hence, we used an implementation analogous to that we had
used for Gamma oscillations, based on excitation followed by long decaying inhibition
(lasting about 5 times longer than inhibition in the standard PING), which we called
PINTH. We know in fact that there exist cells whose inhibitory decay constants are
comparable to the value we used in the model, such as for example Martinotti cells,
which are found in the rat’s neocortex (Silberberg and Markram, 2007b). Obviously, the
PINTH architecture has not yet been verified experimentally, but we believe that part of
the value of a computational model lies in the possibility to offer a set of concrete
predictions that can then be corroborated or disproved. In this particular case, our
prediction would be that Theta rhythm arises from an excitatory-inhibitory loop similar
to that of the PING. In addition, our low frequency circuit is not expected to increase
Theta band power but to reset its phase when in presence of a steep rise in the speech
waveform’s envelope, as it has been shown in various human studies (Luo and Poeppel,
2007; Gross et al., 2013). The two rhythms received rather different inputs: Theta
neurons were fed with the broad spectrum in order to follow the slow global
fluctuations in power; each Gamma neuron, instead, was connected to a different
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cochlear channel to reflect the variety of spectrotemporal filters represented in the
auditory cortex.

A second critical aspect of our model is Theta-Gamma PAC, which is realized
through a bundle of synaptic connections between the excitatory population belonging
to the PINTH (TE) and the one belonging to the PING circuit (GE). Since we assume, in
our model, that GE neurons are the readout cells from which the relevant information
regarding speech constituents can be decoded, their firing pattern becomes particularly
important to examine. Intuitively, the spiking activity of these neurons should be more
intense at the beginning of the syllable, so that it can provide maximal information and
activate the appropriate predictions to anticipate subsequent phonemes, syllables and
even words (Schroeder and Lakatos, 2009; Giraud and Poeppel, 2012). Indeed, our
architecture nicely reproduces this effect, as a consequence of the fast Theta phase reset
and the ensuing strong input reaching GE cells. It is worth noting a crucial feature of
our model with respect to other previous computational works: with our
implementation, the detection of the syllabic onset comes for free from the biophysical
structure of our network, while other speech recognition models relied on either an ad
hoc neural code that has never been observed experimentally (Gtitig and Sompolinsky,
2009) or an external, artificial, onset signal (Hopfield, 2004; Shamir et al., 2009), to which
the brain cannot have access. Theta neurons also act as a sort of internal clock for other
neuronal populations, signaling the onset of speech stimuli. Neurons with these
properties have been found in Al of monkeys (Brasselet et al., 2012; Panzeri et al., 2014).

Although the issue of whether Gamma rhythm can be used to process
information or not is still debated, we think that this does not affect our model.
Criticism over Gamma regards, in fact, the scarce contribution of Gamma to the power
spectrum (about 10%), incompatible conduction delays that would make difficult to
define a proper phase, and the strong dependence of Gamma activity on the presence of
a stimulus (Ray and Maunsell, 2014). Altogether, these arguments cast into question
whether Gamma can be used for coding or to process sensory information. However, for
our model to work properly, Gamma does not necessarily have to be a rhythm stricto
sensu; conversely, our Gamma rhythm is a rather sparse and weak rhythm, resulting
from noisy excitatory-inhibitory feedback interactions, like those of the PING. As a
consequence, individual GE cells may skip one or more Gamma cycle, producing a
rather broad Gamma peak and making it hard to reliably measure a global phase. The
sparseness of the rhythm is essential to maintain a balance between synchronization,
which reduces the entropy of the spike trains and diminishes the information carried by
GE spikes (Eyherabide and Samengo, 2013), and the preservation of a somewhat spread
temporal distribution of GE spikes, which is essential to efficiently encode and classify
different stimuli (Strong et al., 1998). To this end, we measured the mutual information
(MI) between the stimuli and three neural codes: i) the spike count code, which simply
computes the sum of all spikes within a specific time window; ii) the spike pattern code,
which also considers the temporal order of spikes within that window; iii) the phase
code, attributing an additional tag to each spike according the phase of Theta oscillation
at which the spike occurs. Our MI plots are surprisingly similar to those obtained from
in vivo recordings of monkey auditory cortex (Kayser et al., 2009), suggesting that our
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model correctly grasps, at least qualitatively, how information is encoded in that brain
area.

We then established the model’s performance to decode and classify two classes
of stimuli: simple sawtooth waves, mimicking the syllabic shapes (Shamir et al., 2009),
and syllables within English sentences, randomly selected from the TIMIT corpus (J. S.
Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, 1993). The classifier was based on a
clustering method (see Article 1), the readout neurons were, as mentioned above, the GE
cells, and the neural codes we tested were the same we used to compute MI. The
percentage of correctly decoded stimuli was very good for both sawtooth waves (60%
using the best code, i.e. spike patterns; 10% chance level) and for real syllables (58%). As
expected, it dropped dramatically in the two control conditions (i.e. in the absence of a
Theta-Gamma connection or in presence of a Theta module disconnected from the
input). We performed an additional classification analysis where, instead of aligning GE
firing activity with the actual time-course of the sawtooth stimulus (external time
reference), we aligned it with the onset of the theta oscillations produced by the network
(internal time reference), which would correspond to the perceived time-course (see
Section 4). This way we looked at the ability of the system to use an endogenous clue,
i.e. the onset of a Theta burst, as an internal clock. The performance degraded to about
42% for sawtooth waves, remaining however much above chance level.

Finally, we tested the model’s ability to process time-compressed speech, as one
of the significant advantages of using oscillations is the resilience of the phase-resetting
mechanism to time-compression, at least to a certain degree. Behavioral data indicate
that speech can be uniformly squeezed up to 3 times its standard duration before
intelligibility (the degree to which speech can be understood) dramatically drops
(Ghitza and Greenberg, 2009). Similarly, the preferential window provided by Theta
oscillations can be aligned to the syllabic contours only within a certain compression
range: the performance of our model was still above statistical significance up to a
compression factor of 3, but it then plunged to chance level for higher compression
factors. However, the difference in the classification performance of syllables was quite
big between standard uncompressed speech and compression rates of 2 or 3. Our
network is in fact purely bottom-up, therefore it lacks any predictive/anticipatory top-
down effect that we know is a very important factor in speech processing, and which
would probably explain the performance gap between standard and compressed
intelligible speech.

We believe that more computational models are needed in neuroscience, and
especially in audition where neuronal networks were only recently applied to model
neural processes. Our model is an attempt to formulate a set of basic principles
underpinning the chunking of speech and the extraction of its constituents in early
auditory areas. We do not claim the model to be exceptionally close to the actual
biophysical architecture of auditory cortex. Rather, although inspired by presently
available biophysical evidence, we aimed at developing a reasonably simple network
whose performance could be tested under the most important manipulations, and
which could be used for making straightforward predictions. Nevertheless, one of the
potential dangers of computational models comes from overfitting and fine tuning of
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simulations: any behavior can be reconstructed and reproduced with a sufficiently high
number of parameter, whereas the underlying computational architecture most likely
has nothing to do with the real architecture, resulting in very poor predictive
performances. This particular concern was the main motivation for our purely
theoretical investigation of nested oscillators, which lead to the publication of Article 2.
The analytical and numerical results we reported in Article 2 (Fontolan et al., 2013) are
important in order to understand the underpinning laws regulating the interaction
between fast and slow neural oscillators. The theoretical discovery of two regimes with
rather different synchronization properties allows theorists to make predictions
regarding the dynamics of networks observed in vivo based on the dynamics of their
elements. Evidence that these two coupling regimes might have been be recorded in the
hippocampus has appeared recently (Cabral et al., 2014).

7.3 Predictions and perception

Throughout the twentieth century, the majority of neuroscientists looked at the brain as
a collection of passive filters, whose main job consisted in eliminating worthless
information from external inputs. In the last twenty years, however, an alternative
vision of perception has increasingly gained popularity, which implies that the brain
actively maintains an internal model of reality, formed on the basis of previous
experience and used to predict future occurrences (see Section 5). One of the most
famous and influential implementations of this view is predictive coding, as seen in
Section 5.2. In this framework, perception is formed as the interaction between stimulus-
driven, bottom-up, signals and top-down expectations, throughout the various stages of
the sensory hierarchy (Rao and Ballard, 1999). Many recent experiments have indicated
that oscillations are implicated in the formation and transmission of predictions, due to
their dynamic properties that make them particularly attractive to explain T-D and B-U
interactions.

Our work was motivated by three major inquiries: i) investigate the frequency
channels employed in the abovementioned scheme by applying a directional measure,
ii) unravel the presence of cross-frequency coupling, iii) search for any temporal pattern
of modulation in the directional influence. With these questions in mind, we processed
and analyzed a set of rare and thus precious intracortical human EEG data from
epileptic patients, obtained while they were listening to uttered sentences. The
stereotactic electrodes were place along the auditory hierarchy, hence giving us the
opportunity to investigate the relationship between an early sensory area such as Al
and a more associative, higher order area such as AAC.

To answer the first of our inquiries, and assess the causal influences between Al
and AAC as a function of frequency, we used a nonparametric version of Granger
causality (Dhamala et al., 2008). Normally, GC is measured by first modeling the EEG
time series using a multivariate autoregressive process, but this method does elicit
several potential issues that would undermine the trustworthiness of the results
(Dhamala et al., 2008; Barnett and Seth, 2011). Instead, nonparametric GC leans on a
different estimation method that is more robust and reliable (Ding et al., 2008). Our
method was relatively new in neuroscience, since very few articles had reported
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frequency-specific causal influence when we started analyzing this dataset, e.g. from
Steven Bressler’s lab to reveal Beta oscillations in sensorimotor cortex (Brovelli et al.,
2004), and a few others appeared after we began our endeavor (Bosman et al., 2012; van
Kerkoerle et al., 2014). Applied to our dataset, GC revealed a clear causal pattern
between Al and AAC: low frequencies, from Delta to high Beta, conveyed mainly Top-
Down information from AAC to Al; conversely, high frequencies from low to high
Gamma were associated with Bottom-Up flow going from Al to AAC (Figure 3 in
Fontolan et al., 2014). For the first time, we were able to link frequency specific channels
to directional information flow in the human auditory hierarchy, partially confirming
the proposed scheme of Gamma associated with Bottom-Up and Beta with Top-Down,
presented in Sections 4 and 5. Our GC results indicate that a wider low frequency range,
Delta-to-Beta, is involved in T-D flow, that would potentially complicate the hypotheses
illustrated earlier in this thesis (Engel and Fries, 2010).

The frequency dissociation of GC causal peaks also translated into a number of
cross-frequency coupling peaks between the phase of low frequency oscillation from
one area and the amplitude of high frequency oscillations from the other area. In
particular, we observed two clear PAC patterns in the left hemisphere of both patients
(Figure 4 in Fontolan et al., 2014): the phase of low Delta frequencies (<3 Hz) of Al
coupled to the amplitude of Gamma frequencies of AAC, while the phase of Delta-to-
Beta (~3-15 Hz) frequencies in AAC was coupled to the amplitude of Gamma
frequencies in A1.

Power spectra, GC and PAC showed that both intrinsic and extrinsic activity
differed in the two hemispheres. Both A1 and AAC in the left auditory pathway
(historically associated with language) displayed strong modulations in the time-
frequency spectrum, at both high and low frequencies. Right A1 exhibited a pattern of
activity similar to left A1, whereas right AAC appears less engaged in stimulus-driven
activity. The GC plot were also distinct: simple in the right hemisphere, more complex
in the left hemisphere, where T-D and B-U peaks alternated in frequency at the lower
edge of the spectrum. This might reflect the greater involvement of the left hemisphere
in handling speech, as it was confirmed by stimulus/brain correlations (Figure 2 in
Fontolan et al., 2014) and previous analyses on the same dataset (Morillon et al., 2012).
The partial overlap between GC peaks and PAC clusters ensured that the modulations
of Gamma frequencies by the phase of low frequency bands were actually controlled by
distant areas. The fact that a number of significant GC peaks did not find any
correspondence in PAC clusters might have different explanations: i) it could reflect the
absence of cross-frequency coupling at those peaks, ii) it could be due to the lower
sensitivity of the circular-to-linear correlation method, or iii) the peaks could be
connected through other kinds of coupling mechanisms (e.g. phase-phase).

Intriguingly, we also found that the pattern of causal influence was modulated
in time: a fast Fourier transform (FFT), done after subtracting B-U Granger causality
from T-D Granger causality, revealed that the causal influence swaps in time between T-
D and B-U flows, at a rate of about 1-3 Hz and across several frequencies (Figure 5 in
Fontolan et al., 2014). Interestingly, the temporal scale at which T-D and B-U causal
dominance alternates in time, every ~300-1000 ms, roughly matches with the
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syllables/words rate in normal speech, potentially suggesting a timescale for the
prediction of speech constituents. On the other hand, these slow modulations might be
driven by intrinsic slow oscillations such as Delta or Alpha, which have been already
linked to sensory perception of external stimuli (Ng et al., 2012; Arnal et al,, 2014). A
cautionary note should be taken when looking at the modulatory timescales we
measured, since GC fluctuations might be rather irregular and thus only partially
detectable using a method as simple as FFT.

Overall, the patterns we uncovered are compatible with the multiplexing scheme
in the frequency domain: in this respect, ascending information would travel using a
high-frequency channel (Gamma) while descending information would be handled by
low frequency channels (Delta-to-Beta). According to our results, multiplexing does not
appear to be continuous, instead it seems that the two channels dominate during
alternating episodes, lasting about 300-1000 ms. The partial discretization of
multiplexing in time could be of use in the context of predictive coding, as it has been
showed that temporal predictive codes approximately matches the average syllabic
duration (Gagnepain et al., 2012). Where and how these two channels are integrated
remains to be investigated, although we know that predictive coding models implicate
that, at each stage, T-D predictive signals must be formed upon the accumulation of a
minimal amount of B-U information.

There are of course a number of limitations in our methodology: first of all, the
low number of subjects restricts the statistical power of our study. However, besides the
fact that human intracortical recordings are rare and valued, we employed the most
advanced statistical techniques and opted for rather conservative thresholds to ensure
the statistical validity of our analyses. A second limitation comes from the linear
framework of GC: although we have eliminated many of the flaws on MVAR methods,
Granger causality can only grasp linear relationships while other methods, such as
DCM, are sensitive to nonlinear features. Nonetheless, we were mainly interested in
time-varying GC, and by estimating GC directly from the Wavelet spectrum we reduced
the linearity requirement to within the Wavelet transform window. In addition,
nonparametric GC is model-free, while DCM is strongly based on choosing a particular
architecture a priori. GC can be linked to transfer entropy, another interesting measure
that is based on information theory, when the variables are Gaussian (Barnett et al.,
2009). Transfer entropy is nonlinear, but has some severe practical issues, for instance
the estimation of the state-space (Bressler and Seth, 2010). We hence preferred GC in this
particular case, our results being also corroborated by recent works in nonhuman
primates (Bastos et al., 2014; van Kerkoerle et al., 2014). In these two papers, researchers
investigated information passing in the visual cortex of rhesus monkeys using GC,
finding a frequency separation between T-D and B-U pathways similar to what we
found. The converging evidence clearly supports the hypothesis that frequency-domain
multiplexing might be a universal strategy for information passing in sensory
hierarchies, at least in primates.

Critics of predictive coding point out that, if the theory were to be true, we
should observe much less brain activity than what we usually measure, since the B-U
channel would only be activated when an unexpected input is received. Indeed, we do
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find this reduced activity when the subject is performing specific tasks, revealing effects
such as mismatch negativity (MMN) or repetition suppression. Overall, however, the
activity of the brain appears to be high enough to be a challenge for predictive coding
theory, at least in its original form. As a partial answer, a theoretical implementation
proposed in a recent model of visual cortex (Spratling, 2008) demonstrated that the
predictive coding framework can also model cognitive functions, like attention, that
preferentially enhance, rather than inhibit, cortical activity. Still, the theory of predictive
coding requires a high degree of computational complexity to be implemented
efficiently: further computational and experimental insights will be needed to
definitively link predictive coding to cortical operations.

8 Conclusions and future directions

We have seen that an effective combination of experiments and models has so far
uncovered some of the powerful advantages of brain rhythms as an information
processing tool. Direct examples can be picked from this thesis: nested rhythms in early
auditory processing are important for the discretization of speech signal (Article 1 and
2), while distinct frequency bands make up the channels in the multiplexed
transmission of information across auditory cortex (Article 3).

This doctoral dissertation aimed at elucidating the role of oscillations in two
different, although related, processes: i) we have developed a computational model
simulating the parsing of speech signal and the extraction of its constituents; ii) we have
analyzed an exceptional set of human intracortical data to study the frequency channels
responsible for information passing across the auditory hierarchy. In both cases we have
demonstrated an active role for oscillations, by testing the performance of our nested-
rhythms model in classifying speech chunks and by establishing the directional
influences and the nonlinear couplings between Al and AAC as a function of recorded
frequency.

This work is part of a larger effort, involving several researchers, to get brain
rhythms beyond simple correlations and prove their crucial role in brain functions.
Many experimental works are providing convergent evidence that oscillations
characterize many high- and low-level processes in the brain. Nevertheless, it remains
very hard to univocally demonstrate that oscillations are causing a given perception or
behavior, at least until it will become possible to falsify this theory in the sense of
Popper. Recently, the optogenetics breakthrough has revolutionized the brain imaging
techniques in mice, allowing for the online, selective control of neuronal firing. The
ability to activate or inactivate a particular class of neurons is of capital importance, in
order to test the correspondence between behavior and brain waves. Indeed, if we
could, for example, reset the phase of a PING rhythm by simultaneously stimulating
several fast-spiking interneurons: we could then examine the animal behavior and
prove (or disprove) the causal role of oscillations. Optogenetics tools recently started to
be employed to manipulate brain rhythms in rodents, in order to investigate Theta-
Gamma coupling in the hippocampus (Vandecasteele et al., 2014). Researchers can now
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begin to answer the question of whether or not oscillations in the rodent neocortex have
the same significance as in the primate neocortex.

Complementarily to experimental advances, I believe that neuroscience needs
theoretical models, especially in order to be able to answer the question of the functional
significance of oscillations. Even in the absence of compelling experimental proofs, it is
very important, in my opinion, to discuss and model the computational contribution of
oscillations to the coding scheme used in the brain. The main goal would be to explore
the advantages of periodic over asynchronous neuronal firing, since it is well known
that high correlations reduce the capacity of the network to process information but, at
the same time, bringing the spikes together in time can increase the redundancy of the
representation and, consequently, the noise robustness of the network. Future
theoretical studies should address some of the core problems that, in my opinion, are far
from being solved. First of all, whether is it computationally worth to spend several
cortical neurons to produce a highly correlated, and thus less informative, spike pattern
that gives rise to low frequency oscillations. To this end, it would be of great interest to
examine, experimentally, if neurons that participate in generating cortical rhythms are
selective to any of the stimulus features. A further interesting study should focus on the
relationship between three classes of models that, until now, have not been connected:
Bayesian models of probabilistic inference, mechanistic models of brain oscillations and
models of predictive coding. Bringing together these three frameworks would constitute
a critical advancement in understanding the basic principles of neural computation.
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9 Appendices

A. Circular-to-linear correlation

Circular-to-linear correlation is a simple measure to assess correlations between a phase
(circular) variable « and an amplitude (linear) variable x (Berens, 2009). The trick to
compute circular-to-linear correlations consists in calculating the correlations between x
and each of the two projections of the angular variable (sina, cos a) separately. From
the Pearson correlation coefficient, computed for two linear variables x and y:

cov(x,y)

= ~'7 Al
ctoy) var(x) var(y)’ (A1)
we define
T = c(cosa,y), 1y, = c(sina,y), 1.3 = c(sina, cos a). (A.2)
The formula for circular-to-linear coefficient simply reads:
— rczx + rszx - Zrcxrsxrcs (A3)
Pci 1— rczs '
B. Single neuron models

B.1. Integrate-and-fire neuron and the canonical model
Consider the simple circuit depicted in

Figure 4: the driving current I(t) passes through a resistor and a capacitance disposed in

parallel, as in the following equation:

1) = ? + C—d‘;(tt) .

Introducing the membrane time constant t,,, = RC, the previous equation might be

(B.4)

rewritten as

- d‘;it) = V() +RIE). (B.5)

As soon as the voltage reaches its threshold value Vi, the neuron produces a spike and

the potential is reset to zero. Although mathematically easy-to-handle, the linear version
of the integrate-and-fire neuron (LIF) is overly unrealistic even to simulate spike
generation, thus Ermentrout and Kopell introduced a variant (Ermentrout and Kopell,
1986) by adding a voltage-dependent nonlinear (quadratic or exponential) term that
better approximates the fast activation of sodium channels:
av(t

0 DO ry 4RI, 3.6
Where f(V) is any nonlinear function of V. The quadratic (f(V) = V?) instance of the
model (quadratic integrate-and-fire neuron, QIF) has proven very useful in network

simulations and modeling studies, being both relatively realistic and mathematically
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tractable. Although it does not capture well the subthreshold dynamics, the QIF does a
much better job than the LIF in simulating the production of a spike. Also, it does not
require any ad hoc threshold since for any positive value of I, the voltage goes to
infinity in a finite time. Hence the reset condition becomes

V(t*—=0) =00, V(t"+0) = —co. (B.7)
The QIF can be related to a canonical model type I model called theta neuron
(Ermentrout and Kopell, 1986) via a simple change of variables V = tang , thereby

mapping the membrane voltage space onto a one dimensional ring through an
isomorphism. The relative location on the ring is described by the angle 8 € (—m,r],
which represents the phase of the oscillator; by convention a spike is produced when
6 = m. Equation B.6 becomes then:

e 1
(- B.8
T Tm(l cos@)+1(1+cosh), (B.8)
with the reset condition
0(t*—0)=m, 0(t*+0) = —m. (B.9)
The period can be easily computed by integrating Equation B.8 between -m and =,
obtaining
6
i do 7 tan(0/2)]" 7
T=J 1 = Ttan —= | =7 (B.10)
6, T—(l—cosG)+I(1+cos€) Vil —
m

from which we see that
,l_i,r(ﬂ T() =0, (B.11)

i.e. the oscillations frequency will tend to zero.

B.2. The effect of inhibition and the birth of a bifurcation
In the PING model a QIF neuron (or, equivalently, a theta model) receives input from an
inhibitory cell that has been previously excited by QIF firing. The effect of inhibitory

synapses can be incorporated into Equation B.8:

ﬁ = i(1 —cos@)+ (I —g;s))(1+cosB), (B.12)

dt 1,

where g is the synaptic strength or conductance and s; is any gating function, as for

example instantaneous rise upon one excitatory spike, followed by exponential decay:
B S s, (B.13)
dt T

The new negative term in Equation B.12 introduces a dramatic change in the phase

space of the system, by creating a bifurcation point, ie. a topological change in the

dynamics (Shlizerman and Holmes, 2012). In fact, for g;s; > I this differential equation

1+I—-91st

has two equilibrium points on the invariant circle for 4 = cos™* ( ), one stable

1-1+9jst
and one unstable. As inhibition fades, g;s; approaches I and the two fixed points come
close to each other, until they merge and disappear for g; s; = I, i.e. the bifurcation
point. For g; s; < I the total input to the QIF is positive, there are no fixed points, and
the neuron starts firing regularly although its dynamics is slowed down in the vicinity
of the ghost of the merged equilibrium points (8 = 0). The theta model is an example of
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Type I, whose oscillatory dynamics, thanks to the particular bifurcation it bears, can be
made arbitrarily slow (see Appendix B.1); this remains true in presence of inhibition as
long as g; s; < 1.

B.3. Phase response curves
Phase response curves have been introduced to quantify the advancements or
regressions caused to a dynamical system by a perturbation of infinitesimal amplitude,
arriving at time t. The PRC measures the difference between the standard period T and
the time to next spike T’, as a function of the time or phase at which the perturbation has
been applied:

T —T'(t)

—
Similarly, PRCs can be computed as a function of phase ¢ =

PRC(t) = (B.14)

2 (t-t) , Where t, is the

time at which the last spike has been emitted:

PRC(p) =¢' — . (B.15)
an expression that is particularly useful for phase models like the theta neuron. Also, the
PRC formalism remains effective even in presence of irregular oscillations, i.e. when the
time difference between two spikes is subjected to a certain degree of randomness
(Gutkin et al., 2005).
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Abstract

Many environmental stimuli present a quasi-rhythmic structure at different timescales that
the brain needs to decompose and integrate. Cortical oscillations have been proposed as
instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency
streams in sensory signals. Yet their causal role in such a process has never been
demonstrated. Here we used a neural microcircuit model to address whether coupled theta-
gamma oscillations, as observed in human auditory cortex, could underpin the multiscale
sensory analysis of speech. We show that, in continuous speech, theta oscillations can
flexibly track the syllabic rhythm and temporally organize the phoneme-level response of
gamma neurons into a code that enables syllable identification. The tracking of speech
slow fluctuations by theta oscillations, and its coupling to gamma-spiking activity both
appeared as critical features for accurate speech encoding. These results demonstrate that
cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and

encoding.
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Introduction

The physical complexity of biological and environmental signals poses a fundamental
problem to the sensory systems. Sensory signals are often made of different rhythmic
streams organized at multiple time scales, which require to be processed in parallel and
recombined to achieve unified perception. Speech constitutes an example of such a
physical complexity, in which different rhythms index linguistic representations of
different granularities, from phoneme to syllables and words (Rosen 1992; Zion Golumbic,
Poeppel, and Schroeder 2012). Before meaning can be extracted from continuous speech,
two critical pre-processing steps need to be carried out: a demultiplexing step, i.e. the
parallel analysis of each constitutive rhythm, and a parsing step, i.e., the discretization of
the acoustic signal into linguistically relevant chunks that can be individually processed
(Poeppel 2003; Ghitza 2011; Stevens 2002). While parsing is presumably modulated in a
top-down way, by knowing a priori through developmental learning (Ngon et al. 2013)
where linguistic boundaries should lie, it is likely largely guided by speech acoustic
dynamics. It has recently been proposed that speech de-multiplexing and parsing could
both be handled in a bottom-up way by the combined action of auditory cortical
oscillations in distinct frequency ranges, enabling parallel computations at syllabic and
phonemic timescales (Ghitza 2011; Giraud and Poeppel 2012). Intrinsic coupling across
cortical oscillations of distinct frequencies, as observed in electrophysiological recordings
of auditory cortex (P. P. Lakatos et al. 2005; Fontolan et al. 2014), could enable the
hierarchical combination of syllabic- and phonemic-scale computations, subsequently
restoring the natural arrangement of phonemes within syllables (Giraud and Poeppel
2012).

The most pronounced energy fluctuations in speech occur at about 4 Hz (Zion Golumbic,
Poeppel, and Schroeder 2012) and can serve as an acoustic guide for signalling the syllabic
rhythm (Mermelstein 1975). Since the syllabic rate coincides with the auditory cortex theta
rhythm (3-8 Hz), syllable boundaries could be viably signalled by a given phase in the
theta cycle. The relevance of speech tracking by the theta neural rhythm (Henry,
Herrmann, and Obleser 2014) is highlighted by experimental data showing that speech
intelligibility depends on the degree of phase-locking of the theta-range neural activity in
auditory cortex (Ahissar et al. 2001; Luo and Poeppel 2007; Peelle, Gross, and Davis 2013;
Gross et al. 2013). By analogy with the spatial and mnemonic oscillatory processes that

take place in the hippocampus (O Jensen and Lisman 1996; Lisman and Jensen 2013;
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Lever, Kaplan, and Burgess 2014), the theta oscillation may orchestrate gamma neural
activity to facilitate its subsequent decoding (Canolty et al. 2007): the phase of theta-paced
neural activity could regulate faster neural activity in the low-gamma range (>30 Hz)
involved in linguistic coding of phonemic details (Ghitza 2011; Giraud and Poeppel 2012).
The control of gamma by theta oscillations could hence both modulate the excitability of
gamma neurons to devote more processing power to the informative parts of syllabic sound
patterns, and constitute a reference time-frame aligned on syllabic contours for interpreting
gamma-based phonemic processing (Shamir et al. 2009; Ghitza 2011; Kayser, Ince, and
Panzeri 2012; Panzeri et al. 2014).

Compelling as this hypothesis may sound, direct evidence for neural mechanisms linking
speech constituents and oscillatory components is still lacking. One way to address a
causal role of oscillations in speech processing is computational modelling, as it permits to
directly test the efficiency of cross-coupled theta and gamma oscillations as an instrument
of speech de-multiplexing, parsing and encoding. Previous models of speech processing
involved only gamma oscillations in the context of isolated speech segments (Shamir et al.
2009) or did not involved neural oscillations at all (Giitig and Sompolinsky 2009; Yildiz,
von Kriegstein, and Kiebel 2013). On the other hand previous models of cross-frequency
coupled oscillations did not address sensory functions as parsing and demultiplexing (O
Jensen and Lisman 1996; Tort et al. 2007). Here, we examined how a biophysically-
inspired model of coupled theta and gamma neural oscillations can process continuous
speech (spoken sentences). Specifically we determined: (i) whether theta oscillations are
able to accurately parse speech into syllables, (ii) whether syllable-related theta signal may
serve as a reference time frame to improve gamma-based decoding of continuous speech;
(iii) whether this decoding requires theta to modulate the activity of the gamma network.
To address the last two points, we compared speech decoding performance of the model
with two control versions of the network, in which we removed the neural connection
entraining the theta neurons by speech fluctuations or the link that couples them to the

gamma neurons.

Results

Model architecture and spontaneous behaviour
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The model proposed here (Figure 1A) is inspired from cortical architecture (Douglas and
Martin 2004; da Costa and Martin 2010) and function (P. Lakatos et al. 2007) as well as
from previous biophysical models of cross-frequency coupled oscillation generation
(Kopell et al. 2010, Tort et al. 2007; Vierling-Claassen et al. 2010). We used the well
documented PING (Pyramidal Interneuron Gamma) model for implementing a gamma
network: bursts of inhibitory neurons immediately follow bursts of excitatory neurons (Jadi
and Sejnowski 2014), creating the overall all spiking rhythm. Given that gamma and theta
oscillations are both locally present in superficial cortical layers (P. P. Lakatos et al. 2005),
we assume a similar local generation mechanisms for theta and gamma with a direct
connection between them. Direct evidence for a local generation of theta oscillations in
auditory cortex is still scarce (Ainsworth et al. 2011) and we cannot completely rule out
that they might spread from remote generators (e.g. in the hippocampus (Kopell et al.
2010; Tort et al. 2007)). Yet, we built the case for local generation from the following
facts: 1) neocortical (somatosensory) theta oscillations are observed in-vitro (Fanselow,
Richardson, and Connors 2008), 2) MEG, EEG and combined EEG/FMRI recordings in
humans show that theta activity phase-locks to speech amplitude envelope in Al and
immediate association cortex - but not beyond - (Ahissar et al. 2001; Luo and Poeppel
2007; Cogan and Poeppel 2011; Morillon et al. 2012), and 3) theta phase-locking to speech
is not accompanied by power increase, arguing for a phase restructuring of a local
oscillation (Luo and Poeppel 2007). We assumed a similar generation mechanism for theta
and gamma oscillations, with slower excitatory and inhibitory synaptic time constants for
theta (Vierling-Claassen et al. 2010; Kopell et al. 2010). The distinct dynamics for the two
modules reflect the diversity of inhibitory synaptic time scales observed experimentally,
with Martinotti cells displaying slow synaptic inhibition (77 neurons), and basket cells
showing faster inhibition decay (Gi neurons) (Silberberg and Markram 2007). We refer to
the theta network as PINTH (Pyramidal Interneuron Theta), by analogy with PING. The
full model is hence composed of a theta-generating module with interconnected spiking
excitatory (Ze) and inhibitory (77) neurons that spontaneously synchronize at theta
frequency (6-8 Hz) through slow decaying inhibition; and of a gamma-generating module
with excitatory ((Ge) and inhibitory ((7) neurons that burst at a faster rate (25-45 Hz)
synchronized by fast decaying inhibition (PING; Figure 1B) (Borgers and Kopell 2005).
The firing pattern of our simulated neurons is sparse and weakly synchronous at rest,

consistent with the low spiking rate of cortical neurons (Brunel and Wang 2003). Unlike
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the classical 50-80 Hz PING seen in in-vitro preparations of rat auditory cortex (Ainsworth
et al. 2011), our network produced a lower gamma frequency around 30 Hz, as observed in
human auditory cortex in response to speech (Nourski et al. 2009; Pasley, David, and

Mesgarani 2012),

At rest the PINTH population activity synchronizes at the theta time scale, and the PING
population at the gamma time scale. Both the 7e and Ge populations receive projections
from a ‘subcortical’ module that mimics the non-linear filtering of acoustic input by sub-
cortical structures, which primarily includes a signal decomposition into 32 auditory
channels (Chi, Ru, and Shamma 2005). Individual excitatory neurons in the theta module
received channel-averaged input while those in the gamma module received frequency
selective input. Such a differential selectivity was motivated by experimental observations
from intracranial recordings (Fontolan et al. 2014; Morillon et al. 2012) suggesting that
unlike the gamma one, the theta response does not depend on the input spectrum. It also
mirrors the dissociation in primate auditory cortex between a population of 'stereotyped'
neurons responding very rapidly and non-selectively to any acoustic stimulus (putatively
Te neurons) and a population of 'modulated' neurons responding selectively to specific
spectro-temporal features (putatively Ge neurons) (Brasselet et al. 2012). Each Ge neuron
receives input from one specific channel, preserving the auditory tonotopy, so that the
whole Ge population represents the rich spectral structure of the stimulus. Each 7e neuron
receives input from all the channels, i.e. the 7e population conveys a widely tuned
temporal signal capturing slow stimulus fluctuations. Importantly, the two oscillating
modules are connected through all-to-all connections from 7e neurons to (Ge neurons
allowing the theta oscillations to control the activity of the faster gamma oscillations. This
structure enables syllable boundary detection (through the theta module) to constrain the
decoding of faster phonemic information. The output of the network is taken from the Ge
neurons as we assume that the Ge neurons provide the input to higher-level cortical
structures performing operations like phoneme categorization and providing access to
lexicon. Accordingly, in the model the Ge neurons receive more spectral details about
speech than the 7e neurons (Figure 1B). Ge spiking is then referenced with respect to

timing of theta spikes, and submitted to decoding algorithms.

Model dynamics in response to natural sentences
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We first explored the dynamic behaviour of the model. As expected from its architecture
and biophysical parameters (see Methods), the neural network produced activity in theta
(6-8 Hz) and low gamma (25-45 Hz) ranges, both at rest and during speech presentation.
Consistent with experimental observations (Luo and Poeppel 2007) there was no notable
increase in theta spiking during speech presentation, but sentence onsets induced a phase-
locking of theta oscillations as shown by the PSTH of theta neurons, which was further
enhanced by all edges in speech envelope. Consequently, the resulting global evoked
activity followed the acoustic envelope of the speech signal (Figure 1C) (Abrams et al.
2008). LFP indexes the global synaptic activity over the network (excitatory neurons of
both networks) and its dynamics closely followed spiking dynamics. Unlike the LFP theta
power pattern, the LFP theta phase pattern was robust across repetitions of the same
sentence (Figure 1 — Figure Supplement 1A,1C), replicating LFP behaviour from the
primate auditory cortex (Kayser et al. 2009), and human MEG data (Luo and Poeppel
2007; Luo, Liu, and Poeppel 2010). In line with other empirical data from human auditory
cortex (Nourski et al. 2009) gamma oscillations followed the onset of sentences (Figure
1C). Owing to the feed-forward connection from the theta to the gamma sub-circuits, the
gamma amplitude was coupled to the theta phase both at rest and during speech (Figure
1D). The coupling was visible both in the spiking (Figure 1 — Figure Supplement 1B) and
LFP signal (Figure 1D). Critically, this coupling disappeared when the theta/gamma
connection was removed, showing that a common input to 7e and Ge cells is not sufficient

to couple the two oscillations.

Syllable boundary detection by theta oscillations

Before testing the speech decoding properties of the model, we explored whether syllable
boundaries could reliably be detected at the cortical level by a theta network (see
Methods). This first study was based on a corpus consisting of 4620 phonetically-labelled
English sentences (TIMIT Consortium, 1993). The acoustic analysis of these sentences
confirmed a correspondence between the dominant peak of the speech modulation
spectrum and the mean syllabic rate (3-6 Hz) (Figure 2 — Figure Supplement 1A), whereby
syllabic boundaries correspond to trough in speech slow fluctuations (Peelle, Gross, and
Davis 2013). The theta network in the model (Figure 2 — Figure Supplement 1B) was
explicitly designed to exploit such regularities and infer syllable boundaries. When

presenting sentences to the theta module, we observed a consistent theta burst within 50 ms

6

65



following syllable onset followed by a locking of theta oscillations to theta acoustic
fluctuations in the speech signal (Figure 2 — Figure Supplement 1C-D). More importantly,
neuronal theta bursts closely aligned to the timing of syllable boundaries in the presented
sentences (Figure 2A). We compared the performance of the theta network to that of two
alternative models also susceptible to predict syllable boundaries: a simple linear-nonlinear
acoustic boundary detector (Figure 2 — Figure Supplement 1E), and Mermelstein
algorithm, a state-of-the-art model which, unlike the model developed here, only permits
“off-line” syllable boundary detection (Mermelstein 1975). The theta network performed
better than both the linear model and the Mermelstein algorithm (Figure 2B, all p-values
<1022), Similar to results from behavioral studies of human perception (Miller, Grosjean,
and Lomanto 1984; Nourski et al. 2009; Mukamel et al. 2011) the theta network could
adapt to different speech rates. The model performed better than other algorithms, with a
syllabic alignment accuracy remaining well above chance levels (p<107?) in the twofold
and threefold time compression conditions. (Figure 2B).

This first study demonstrates that theta activity provides a reliable, syllable-based, internal
time reference that the neural system could use when reading out the activity of gamma

neurons.

Decoding of simple temporal stimuli from output spike patterns

Our next step was to test whether the theta-based syllable chunks of output spike trains (Ge
neurons) for the different input types could be properly classified. We first quantified the
model’s ability to encode stimuli designed as simple temporal patterns. We used 50 ms
sawtooth stimuli whose shape was parametrically varied by changing the peak position
(Figure 3A), with inter-stimulus interval between 50 and 250 ms. This toy set of stimuli
was previously used in a gamma-based speech encoding model and argued to represent
idealized formant transitions (Shamir et al. 2009). We extracted spike patterns from all the
Ge (output) neurons from -20 ms before each sawtooth onset to 20 ms after its offset. This
procedure is referred to as “stimulus timing” since it uses the stimulus onset as time
reference. Using a clustering method (see Methods), we observed that the identity of the
presented sawtooth could be decoded from the output spike patterns (Figure 3A) with over
60% accuracy (Figure 3C, light gray bar). We also computed the decoding performance
when we used an internal time reference provided by the theta timing rather than by the

stimulus timing. When spike patterns were analysed within a window defined by two
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successive theta bursts (Figure 3C, dark grey bar), sawtooth decoding was still possible
and even relatively well preserved (mean decoding rate of 41.7%).

We then compared the decoding performance from the full model with that of two control
models: one in which the theta module was not driven by the stimulus (undriven theta
model) and one in which the theta module was not connected with the gamma module
(uncoupled theta/gamma model) (Figure 3B, green and blue). Decoding performance of
both control models, as revealed by the mean performance (Figure 3C) and confusion
matrices (Figure 3E), was degraded for either neural code (theta onset and stimulus timing,
all p-values <10®). The details of the raw confusion matrices show that the temporal
patterns are decoded correctly or as a neighbouring temporal shape only in the intact
version of the model (Figure 3E). Furthermore, the intact model achieved better signal vs.
rest discrimination than the two control models, notably avoiding false alarms (Figure 3D).
In summary, these analyses show that gamma-spiking neurons within theta bursts provide
a reliable internal code for characterizing simple temporal patterns, and that this ability is
granted by the time-locking of theta neurons (7e units) to stimulus and the modulation they

exert on the fast-scale output (Ge) units.

Continuous speech encoding by model output spike patterns

The overarching goal of this theoretical work was to assess whether coupled cortical
oscillations can achieve on-line speech decoding from confinuous signal. We therefore set
out to classify syllables from natural sentences. To decode Ge spiking, we used similar
procedures as for the encoding/decoding of simple temporal patterns. Output Ge spikes
were parsed into spike patterns based on the theta chunks, and the decoding analysis was
used to recover syllable identity (Figure 4A). To evaluate the importance of the precise
spike timing of gamma neurons, we compared decoding (see methods) using spike patterns
(i.e. spikes labelled with their precise timing w.r.t. chunk onset) versus those obtained from
plain spike counts (i.e. unlabelled spikes). When using spike patterns syllable decoding
reached a high level of accuracy in the intact model: 58% of syllables were correctly
classified within a set of 10 possible (randomly chosen) syllables (Figure 4B). Syllable
decoding dropped when using spike counts instead of spike patterns (p<10-2). Critically,
decoding was poor in both control models (undriven theta and uncoupled theta/gamma)

using either spike counts or spike patterns (significantly lower than decoding using spike
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patterns in the full model, all p-values < 102, and non-significantly higher than decoding

using spike counts in the full model, all p-values > 0.08 uncorrected).

We also explored the model performance for encoding syllables spoken by different
speakers. We used a similar decoding procedure as above, but here the classifier was
trained on different speakers pronouncing the same two sentences. Theta chunks were
classified into syllables based on the network response to the two sentences uttered by 99
other speakers. The material included sentences spoken by 462 speakers of various ethnic
and geographical origins, showing a marked heterogeneity in phonemic realization and
syllable durations (as labelled by phoneticians). The syllable duration distribution was
skewed with the median at 200 ms and tail values ranging from a few ms to over 800ms
(Figure 4 Supp. 1A). Given that theta activity is meant to operate in a 3-9 Hz range, i.e.
integrate speech chunks of about 100 to 300 ms (Ghitza 2011; Ghitza 2014), we did not
expect the model to perform equally well along the whole syllable duration range.
Accordingly, decoding accuracy was not uniform across the whole syllable duration range.
When decoding from spike pattern, the intact model allowed 24% accuracy (chance level
at 10%). It showed a peak in performance in the range in which it is expected to operate,
i.e. for syllables durations between 100 and 300 ms. Given the cross-speaker phonemic
variability such a performance is fairly good. Critically, the intact model outperformed
control models both within the 100 to 300 ms range (p<0.001), and throughout the whole
syllable duration span (p<0.001). These analyses overall show that the model can flexibly
track syllables within a physiological operating window, and that syllable decoding relies
on the integrity of the model architecture.

Lastly, we tested more directly the resilience of the spike pattern code to speech temporal
compression and found that while degrading the decoding performance remained above
chance for compression rates of 2 and 3 (Figure 4D). Altogether, the decoding of syllables
from continuous speech showed that coupled theta and gamma oscillations provide a
viable instrument for syllable parsing and decoding and that its performance relies on the

coupling between the two oscillation networks.

Encoding properties of model neurons

We finally assessed the physiological plausibility of the model by comparing the encoding

properties of the simulated neurons, without further parameter fitting, with those of
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neurons recorded from primate auditory cortex (Kayser et al. 2009; Kayser, Ince, and
Panzeri 2012). The first analysis of neural encoding properties consisted of comparing the
ability to classify neural codes from the model into arbitrary speech segments of fixed
duration (as opposed to classification into syllables as in previous section). We simulated
data using natural speech and studied the spiking activity of Ge neurons by implementing
the same methods of analysis as in the original experiment. We extracted fixed-size
windows of spike patterns activity for individual Ge neurons, and assessed neural encoding
characteristics using different neural codes. Speech encoding was first evaluated using a

nearest-mean classifier and then using mutual information techniques (Kayser et al. 2009).

Classifier analysis. In this analysis neural patterns were classified not into syllables as
above or into any linguistic constituent but into arbitrary segments of speech, allowing for
a-theoretical insight into the encoding properties of neurons. We extracted a subset of 25
sentences from the TIMIT corpus and exposed the network to 50 presentations of each
sentence from the subset. We defined 10 stimuli as 10 distinct windows of a given size
(from 80 to 480 ms) randomly extracted from the 25 sentences, and then assessed the
capacity to decode the identity of a stimulus from the activity of individual Ge neurons
within that window (Kayser, Ince, and Panzeri 2012). Three different codes were used
(Figure SA): a simple spike count was used as reference code; a time-partitioned code
where spikes were assigned to one of 8 bins of equal duration within the temporal window;
a phase-partitioned code where spikes were labelled with the phase of LFP theta at the
timing of spike (the spikes were then assigned into one of 8 bins according to their phase).

We observed that for 80 to 240 ms windows (within one theta cycle), decoding was almost
as good for the phase-partitioned code as for the time-partitioned code (Figure 5B, left). In
other words, stimulus decoding using theta timing was nearly as good as when using
stimulus timing. Performance using the spike count was considerably lower (p<10™? for all
6 window sizes). Overall, there was a qualitative and even quantitative match between the
results from simulated data and the original experimental results (Figure 5B, right). When
we removed either the input-to-theta (undriven theta model) or the theta-to-gamma
connection (uncoupled theta/gamma model) in the network, the performance of the phase-
partitioned code dropped to just above that of the spike count code (Figure 5 — Figure
Supplement 1A, significantly lower increase in decoding performance using phase-
partitioned instead of spike count code compared to full model, p<10~2 for all 6 window

sizes and both control models), and the simulations no longer predicted the experimental
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results. Finally, experimental data and simulations from the intact model also matched
when we investigated the dependence of decoding accuracy on the number of bins, which

was not the case for any of the control models (Figure 5 — Figure Supplement 1B).

Mutual information (MI) analysis. M1 between the input (acoustic stimulus) and the output
(neural pattern) provides an alternative measure for how well stimuli are encoded in the
output pattern (see Methods). We used the same simulation data as for the classification
procedure, but the sentences were subdivided into shorter chunks using a non-overlapping
time window (length T: 8-48 ms) (Kayser et al. 2009). We compared the MI between the
stimulus and neural activity in individual Ge neurons as a function of the length of
stimulus window, using four neural codes: spike count, time-partitioned code, phase-
partitioned code combined with spike count and finally combined phase- and time-
partitioned codes. These codes are qualitatively equivalent to the decoding strategies used
in the previous classifier analysis. Figure SC shows that taking into account the spike phase
boosts the MI carried by the Spike count code or the Time-partitioned code alone (p<10-2
for all 6 window sizes). In other words, spike phase provided additional rather than
redundant information to more traditional codes. The gain provided by spike phase
increased when enlarging the window and when combined with either spike count or spike
pattern (Spike Count vs. Time-partitioned, Spike count and Phase-partitioned code vs.
Time- and Phase-partitioned code). These results replicate the original experimental data
from monkey auditory cortex (Kayser et al. 2009). Such a pattern was not reproduced
using any of the control models (Figure 5 — Figure Supplement 1C). These results hence
show that in addition to enhancing the reliability of the spike phase code, the theta-gamma
connection enhanced the temporal precision of (Ge neurons spiking in response to speech
stimuli.

Critically, results from both classifier and mutual information analyses demonstrate that
the full network architecture of the model provides an efficient way of boosting the
encoding capacity of neurons in a way that bears remarkable similarities to actual neurons

from primate auditory cortex.

Discussion

Like most complex natural patterns, speech contains rhythmic activity at different scales

that conveys different and sometimes non-independent categories of information. Using a
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biophysically-inspired model of auditory cortex function, we show that cortical theta-
gamma cross-frequency coupling provides a means of using the timing of syllables to
orchestrate the readout of speech-induced gamma activity. The current modelling data
demonstrate that theta bursts generated by a theta (PINTH) network can predict “on-line”
syllable boundaries at least as accurately as state-of-the-art offline syllable detection
algorithms. Syllable boundary detection by a theta network hence provides an endogenous
time reference for speech decoding. Our simulated data further show that a gamma
biophysical network, receiving a spectral decomposition of speech as input, can take
advantage of the theta time reference to encode fast phonemic information. The central
result of our work is that the gamma network could efficiently encode temporal patterns
(from simple sawtooths to natural speech), as long as it was entrained by the theta rhythm
driven by syllable boundaries. The proposed theta/gamma network displayed sophisticated
spectral and encoding properties that compared both qualitatively and quantitatively to
existing neurophysiological evidence including cross-frequency coupling properties
(Schroeder and Lakatos 2009) and theta-referenced stimulus encoding (Kayser et al. 2009;
Kayser, Ince, and Panzeri 2012). The projections from the 7e to Ge neurons endowed the
network with phase-amplitude and phase-frequency coupling between gamma and theta
oscillations, at both the spike and the LFP levels (Ole Jensen and Colgin 2007). This
closely reproduces the theta/gamma phase-amplitude coupling observed from intracortical
recordings (Giraud and Poeppel 2012; P. P. Lakatos et al. 2005). Importantly, due to the
dissociation of excitatory populations we obtained denser gamma spiking immediately
after the theta burst evoked by the syllable onset. This validates a critical point of
theta/gamma parsing system, namely that a more in-depth encoding is carried-out by the
auditory cortex during the early phase of syllables, when more information needs to be

extracted (Giraud and Poeppel 2012; Schroeder and Lakatos 2009).

The human auditory system, like other sensory systems, is able to produce invariant
responses to different physical presentations of the same input. Importantly, it is relatively
insensitive to the speed at which speech is being produced. Speech can double in speed
from one speaker to another, and yet remain intelligible up to an artificial compression
factor of 3. In the current model, theta bursts could still signal syllable boundaries when
speech was compressed by a factor 2 and this alignment deteriorated for higher
compression factors. Syllable decoding was significantly degraded for compressed speech,

yet remained twice as accurate as chance. Our network is purely bottom-up and does not
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include high level linguistic processes and representations, which in all likelihood plays an
important role in speech perception (Davis et al. 2011; Peelle, Gross, and Davis 2013;
Gagnepain, Henson, and Davis 2012): its relative resilience to speech compression is thus
a fairly good performance. A previous model (Giitig and Sompolinsky 2009) proposed a
neural code that was robust to speech warping, based on the notion that individual neurons
correct for speech rate by their overall level of activity. While this model achieved very
good speech categorization performance, it relied on extremely precise spiking behaviour
(neurons spiked only once, when their associated channel reached a certain threshold), for
which neurophysiological evidence is scarce. Another model developed by Hopfield
proposes that a low gamma external current provides encoding neurons with reliable
timing and dynamical memory spanning up to 200 ms, a long enough window to integrate
information over a full syllable (Hopfield 2004). The utility of gamma oscillations for
precise spiking is arguably similar in both Hopfield’s model and ours, whereas the syllable
integration process is irregularly ensured by intermittent traces of recent (~200 ms) neural
activity in Hopfield’s, and in ours by regularly spaced theta bursts that are locked to the
speech signal. The advantage of our model is that integration over long speech segments is
permanently enabled by the phase of output spikes with respect to the ongoing theta
oscillation. Our approach shows that accurate encoding can be achieved using a system
that does not require explicit memory processes, and in which the temporal integration

buffer is only emulated by a slow neural oscillator aligned to speech dynamics.

In the current combined theta/gamma model, theta oscillations do not only act as a
syllable-scale integration buffer, but also as a precise neural timer. Because syllabic
contours are reflected in the slow modulations of speech, the theta oscillator can flexibly
entrain to them (3-7 Hz, Figure 2 — Figure Supplement 1A) and signal syllable boundaries.
The spiking behaviour of theta neurons parallels experimental observations that a subset of
neurons in A1l respond to the onset of naturalistic sounds (Fishbach, Nelken, and Yeshurun
2001; Phillips, Hall, and Boehnke 2002; Xiaogin Wang et al. 2008), providing an
endogenous time reference that serves as a landmark to decode from other neurons
(Kayser, Ince, and Panzeri 2012; Brasselet et al. 2012; Panzeri and Diamond 2010, Panzeri
et al. 2014). This parallels the dissociation between Ge and 7e units in our model: while
Ge units are channel specific, 7e units cover the whole acoustic spectrum, which allow
them to respond quickly and reliably to the onset of all auditory stimuli (Brasselet et al.

2012). In the model, however, theta neurons did not only discharge at stimulus onset but at
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regular landmarks along the speech signal, the syllable boundaries (Zhou and Wang 2010).
These neurons, hence, tie together the fast neural activity of gamma excitatory neurons into
strings of linguistically relevant chunks (syllables), acting like punctuation in written
language (Lisman and Buzsaki 2008). This mechanism for segmentation is conceptually
similar to the segmentation of neural codes by theta oscillations in the hippocampus during
spatial navigation (Gupta et al. 2012).

From an evolutionary viewpoint, because the theta rhythm is neither auditory- nor human-
specific, it might have been incorporated as a speech-parsing tool in the course of language
evolution. Likewise, human language presumably optimized the length of its main
constituents, syllables, to the parsing capacity of the auditory cortex. As a result, syllables
have the ideal temporal format to interface with, e.g., hippocampal memory processes, or
with motor routines reflecting other types of rhythmic mechanical constrains, e.g. the

natural motion rate of the jaw (4Hz) (Lieberman 1985).

Although conceptually promising, syllable tracking and speech encoding by a theta/gamma
network, as proposed here, also shows some limitations. While our current model is purely
bottom-up, top-down predictions play a significant role in guiding speech perception
(Arnal and Giraud 2012; Gagnepain, Henson, and Davis 2012; Poeppel, Idsardi, and van
Wassenhove 2008) presumably across different frequency channels and processing
timescales (Xiao-jing Wang 2010; Bastos et al. 2012; Fontolan et al. 2014). How these
predictions interplay with theta- and gamma-parsing activity remain unclear (Lee,
Whittington, and Kopell 2013). Experimental findings suggest that theta activity might be
at the interface of bottom-up and top-down processes (Peelle, Gross, and Davis 2013).
Theta auditory activity is better synchronized to speech modulations when speech is
intelligible, irrespective of its temporal or spectral structure (Luo and Poeppel 2007
Peelle, Gross, and Davis 2013). In the present model, theta activity bears an intrinsic
temporal predictive function: it is driven by speech modulations, but is also resilient
enough to syllable length variations to stay tuned to the global statistics of speech (average
syllable duration). The model performed well above chance level when decoding syllables
from a new speaker, showing flexibility in syllable tracking within a 3 to 9 Hz range. A
natural follow-up of this work will hence be to explore how the intrinsic dynamics of theta
and gamma activity interact not only with sensory input but also with linguistic top-down
signals, e.g. word, sentence level predictions (Gagnepain, Henson, and Davis 2012), and

even cross-modal predictions (Arnal et al. 2009). The trade-off between the autonomous
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functioning of theta and gamma oscillatory activity on one hand, and their enslavement to
sensory input on the other hand are at the core of future experimental and theoretical

challenges.

In conclusion, our model provides a direct evidence that theta/gamma coupled oscillations
can be a viable instrument to de-multiplex speech, and by extension to analyze complex
sensory scenes at different timescales in parallel. By tying the gamma-organized spiking to
the syllable boundaries, theta activity allows for decoding individual syllables in
continuous speech streams. The model demonstrates the computational value of neural
oscillations for parsing sensory stimuli based on their temporal properties, and offers new
perspectives for syllable-based automatic speech recognition (Wu et al. 1997) and brain-

machine interfaces using oscillation-based neuromorphic algorithms.

Material and Methods

Architecture of the full model

The model is composed of 4 types of cells: theta inhibitory neurons (77, 10 neurons), theta
excitatory cells (7e, 10 neurons), gamma inhibitory neurons (Gi, 32 neurons) and gamma
excitatory neurons (Ge, 32 neurons) also called ouzput neurons. All neurons were modeled
as leaky integrate-and-fire neurons (LIF), where the dynamics of the membrane potential
V; of the neurons followed:

Cav,/dt =g, (V, -V)+ ™)+ IN () + I’ + (1)

where C is the capacitance of the membrane potential; g; and V' are the conductance and
equilibrium potential of the leak current ; ™, /¥ and I°C are the synaptic and constant
currents, respectively ; n(t) is a Gaussian noise term of ¢; variance.

Whenever J; reached the threshold potential V7xz, the neuron emitted a spike and V; was
turned back to Vzgser.

™V is the sum of all synaptic currents from all projecting neurons in the network:

SYN . SYN
(1) = Y, 88,00V =V(0)
Where g is the synaptic conductance of the j-fo-i synapse, s,(t) is the corresponding

SYN

activation variable and V' is the equilibrium potential of synaptic current (0 mV for

excitatory neurons, -80 mV for inhibitory neurons). The activation variable s;(t) varies as
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follow:
d [dt = -1/7% +6(t - £57)
ds; [dit = -1/%?
where r’f and rf are the time constants for synaptic rise and synaptic decay, respectively.

The connectivity among the cells is the following:
- Te and T7i are reciprocally connected with all-to-all connections, generating the
PINTH rhythm. There were also all-to-all connections within 7i cells.
- Ge and Gi are also reciprocally connected with all-to-all connections, generating
the PING rhythm.
- Te projected with all-to-all connections to Ge cells, enabling cross-frequency
coupling.
Input current 7”7 (t) is non-null only for Te and Ge cells and follows the equation:
(1) = Euwdxc(t)
where x.(7) is signal from channel ¢ and «,, is the weight of the projection from channel ¢
to unit /.
Input to 7e units is computed by filtering the auditory spectrogram by an optimized 2D
spectro-temporal kernel (see section LN model below). LFP signal was simulated by
summing the absolute values of all synaptic currents to all excitatory cells (both Ge and
Te), as in (Mazzoni et al. 2008). All simulations were run on Matlab. Differential equations
were solved using Euler method with a time step of 0.005 ms. Values for all parameters are

provided in Tables 1 and 2.

Stimuli

We used oral recordings of English sentences produced by male and female speakers from
the TIMIT database (Consortium 1993). The sentences were first processed through a
model of subcortical auditory processing (Chi, Ru, and Shamma 2005) to the sentences.
The model decomposes the auditory input into 128 channels of different frequency bands,

reproducing the cochlear filterbank (http:/www.isr.umd.edu/Labs/NSL/Software.htm).

The frequency-decomposed signals undergo a series of nonlinear filters reflecting the
computations taking place in the auditory nerve and other subcortical nuclei. We then
reduced the number of channels from 128 to 32 by averaging the signal of each group of 4
consecutive channels, and used these 32 channels as input to the network. Each channel
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projected onto a distinct Ge cell (i.e. specific connections, , =0.258(c,i)). As for Te
input, each channel was convolved by the temporal filter and projected to all 7e cells (all-
to-all connections). Such a convolution can be implemented by a population of relay
neurons that transmit their input with a certain delay, here between 0 and 50 ms.

Phoneme identity and boundaries have been labelled by phoneticians in every sentence of
the corpus. We used the Tsylb2 program (Fisher 1996) that automatically syllabifies
phonetic transcriptions (Kahn 1976) to merge these sequences of phonemes into sequences
of syllables according to English grammar rules and thus get a timing for syllable
boundaries.

To address the resilience of the model to speech compression we produced compressed
sentences by applying a pitch-synchronous, overlap and add (PSOLA) procedure
implemented by PRAAT, a speech analysis and modification software

(http://www.fon hum.uva.nl/praat/). The procedure retains all spectral properties from the

original speech data in the compressed process. The same precortical filters were then

applied as for uncompressed data before feeding into the network.

Syllable boundary prediction algorithms

Syllable boundaries triggered average (STAs) were computed as follow: for each syllable
boundary (syllable onsets excluding the first of each sentence), we extracted a 700 ms
window of the corresponding locked to the syllable boundary and averaged over all
syllable boundaries. STAs were computed for speech envelope and for each channel of the
Chi et al. (Chi et al., 2005) model.

Predictive models

We compared the performance of four distinct families of models to predict the timing of
syllable boundaries based on speech envelope or speech audiogram: the Mermelstein
algorithm (see below), a Linear Non-linear (LN) model (a simplified integration-to-
threshold algorithm, see below), the entrained theta neural oscillator (see below) and a

purely rhythmic control model (see below).

1. Mermelstein algorithm

The Mermelstein algorithm is a standard algorithm that predicts syllable boundaries by
identifying troughs in the power of the speech signal (Mermelstein, 1975; Villing et al.,
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2004). The predicted boundaries are computed according to the following steps. First,
extract the power of speech signal in the 500 — 4000 Hz range (grossly corresponding to
formants) and low-pass filter at 40 Hz to remove fast fluctuations, defining a so-called
loudness function. Second, for each sentence, compute the convex hull of the loudness
signal and extract the maximum of the difference between the loudness signal and its
convex hull. If that difference exceeds a certain threshold 7, and if the peak intensity of
the interval of no more than P, smaller than the peak intensity of the whole sentence,
then that time of maximal difference is defined as a predicted boundary and the same
procedure is applied recursively to the intervals to the left and right of that boundary.
Parameters 7., and P, were optimized to yield minimum prediction distance (see

below), yielding 7., = 0.152 dB and P = 15.85 dB.

Note that this algorithm cannot be run online since the convex hull at a given time depends
on the future value of speech power. Thus syllable boundaries can only be predicted after a
certain delay, which makes it impractical for online speech comprehension as occurring in

the human brain.

2. LN model and variations

To evaluate the capacity of a simplified neural system to predict syllable boundaries, we
trained a generalized linear point process model on the syllable dataset. The model (figure
2 — Figure Supplement 1D) does not incorporate full neural dynamics but simply
comprises a linear stimulus kernel followed by nonlinear function. The process issues a
‘spike’ or ‘syllable boundary signal’ whenever the output reaches a certain threshold
(Pillow et al., 2008). This signal is fed back into the nonlinear function (another kernel 72
is used here): such negative feedback loop implements a relative refractory period. This
model is a generalization of the Linear-Nonlinear Poisson model, hence we refer to it
simply as LN model. We used the 32 auditory channels as input to the model and trained it
to maximize its syllable boundary prediction performance.

We looked for a linear filter that is separable in its temporal and spectral component. We
first computed the Spike Triggered Average (or rather ‘Syllable Boundary Triggered
Average’) for all 32 channels from 600 ms to O ms prior to the actual boundary in 10 ms
time steps. Yet S74 provides the optimal estimate for the linear kernel in a LN model only

when stimulus consists of uncorrelated white noise (Chichilnisky, 2001). To get the
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optimal values out of the white noise condition, we looked at the separable filter H that
yields best prediction of the output, i.e. minH (< |(Y(t) — Y(t|H)|? >), where:
- T(? is a binary output equal to 1 if there is a syllabic boundary in the 10 ms
interval, O otherwise
- His a separable spectrotemporal filter (i.e. H(w,u) = S(w)T(u) for all orders u and
all frequencies . S and T are, respectively, the spectral and temporal component of
filter H.
- Y(tH) = Yuw Hw, W)X(w, t — u) where X(w,r) is the value of auditory

channel w at time step t.
Optimal solutions of the system verify:

Z'I‘(U)R(m, w) = Z SEOT@TWM (W, & u,v) Vo

uv,§

ZS((:))R((U, u) = Z S(w)SE)T(wIM(w, &,u,v) Yu

where R(w,u) = (Y()X(w,1)), (i.e. R1is the Spike Triggered Average)
and M is the covariance tensor for X, ie. M{(w,§,u,v) = cov(X(w,t —u),X(&1-v)).
Solutions to 7"and S for that system of equations can be approximated numerically

using the following iterative procedure:
So(w) =1 Vo, Ty(u) =1 Yu
- ToR
o (2“ » T, (WM, v,.,.)
RS,
Y Snt1(@)Sne1(HM(w,§,.,.)

)7

Thsr = (

)

and then stopping when the resulting square error
|RSo = B¢ Sns1(@)Ss1 (T, (WM (w,§, ., l')||; goes below a minimum value (we used a

threshold of 10~ "). The first 6 components (i.e. time bins) of the temporal kernel (i.e. 0 —
50 ms) were also used for input convolution in the theta model. We did not integrate
further components (60 — 400 ms) since their weight was much lower and its
implementation by relay neurons seemed less realistic.

To retrieve the optimal value for all parameters of the model, we used the GLM matlab

toolbox developed in the Pillow lab (http://pillowlab.cps.utexas.edu/code GLM html),

using as input the one-dimensional signal U(t) = ¥, S(w)X(w,t). Other parameters of the
LN model including the self-inhibition temporal kernel /4 were optimized using the
gradient descent implemented in the toolbox. This method provides estimation for a
stochastic generalized LN model. We were interested in assessing the performance of a
deterministic LN model. We then run a deterministic model with the same parameters as
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the stochastic model plus one new free parameter describing the normalized time to next

spike (in the stochastic model, that time is drawn from an exponential distribution). The

next

value of 1;;

was optimized using the same minimization procedure used for others models

(see below). Two other parameters were also optimized again, since this procedure
minimized a different score than the GLM toolbox score: time scale of self-inhibition T,

and constant input to the model DC (Table 2).

We made one last modification to this LN model. We optimized the model such that
it would maximally fire not at the time of syllable boundaries but 10 ms posterior to that
time (de facto, we simply slid the STA window by 10 ms). This provides a delayed signal
but likely more reliable since it can use more information (notably the rebound in the

auditory spectrogram that is present right after a syllable boundary).

3. Theta model
The theta model is composed of the 7e and 7i cells from the full network model described
above, with the exact same parameter set. 11 parameters were optimized in the full model,

10 in the control model (see values in Table 3).

4. Control model
The control model was used to provide a baseline for assessing the performance of other
models. Under these control conditions, predicted syllable boundaries were generated
rhythmically at a fixed time interval, irrespective of the stimulus. The rate of the rhythmic
process was varied from 1 Hz to 15 Hz in 0.5 Hz intervals. Such control model yielded
better performance than another control model consisting of a homogeneous Poisson
process. It thus provides a more stringent control for estimating the efficiency of other

algorithms.

Model performance evaluation

We evaluated how well syllable boundaries predicted by any model matched with the
boundaries derived from labelled speech data. As an evaluation metrics we used a point
process distance that is used to compare distance between spike trains (Victor and Purpura,
1997). Shift cost was set to 20 sec” (in other words, a predicted and an actual boundary

could be matched if they were no more than 50 msec apart).
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To draw comparison between different models, for each level of compression, we
computed the (non-normalized) distance measure for the theta model summed over all
sentences in the test dataset, as well as the average number of predicted boundaries per
sentence. We then matched the theta model to a control rhythmic model with the same
predicted syllabic rate, and computed the difference between the non-normalized distance

for the theta model and for that matched rhythmic model.

Optimisation

We optimized the parameters from all models to get the minimal normalized point process
distance between predicted and actual boundaries in each sentence. Optimization was
made using global gradient descent (function fininsearch in Matlab), and repeated with
many initial points to avoid retaining a local minimum. Although both the theta model and
the control model are intrinsically stochastic, the sample size was large enough for the
objective function over the entire sample to be nearly deterministic, allowing for
convergence of the gradient descent algorithm. The list of optimized parameters for each
type of model is provided in the related model sections above. We split the entire TIMIT
TRAIN dataset (4620 sentences) into two datasets: a first dataset of 1000 sentences was
used to compute optimal parameters; final assessment of an algorithm performance with its

optimal parameters was done on a separate set of 3620 sentences.

Analysis of model behaviour

LFP Spectral analysis

Simulated LFP was downsampled to 1000 Hz before applying a time-frequency
decomposition using complex Morlet wavelet transform, with all frequencies between 2
and 100 Hz with a 0.5 Hz precision. Coherence between stimulus and LFP signal was then
computed for each time point ¢ and each frequency f over 100 simulations using 100
distinct sentences sen, using the formula from (Mitra and Pesaran 1999). Synchronized
bursts of the PING or PINTH were detected using spike timings in Gi and 7i populations
since spikes of inhibitory neurons were more synchronized than those of excitatory
neurons. Synchronous bursts of spikes were detected within a given population whenever
more than 10% of neurons in the population spikes within a 6 ms interval (15 ms for 77

cells).

Cross-frequency coupling
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We computed cross-frequency coupling from 50 simulations of the model, each with a
different TIMIT sentence preceded by 1000-1500 ms rest.

For the LFP phase-amplitude coupling, we extracted phase and amplitude from all
frequencies from 2 Hz to 70 Hz in 1 Hz interval, and computed the Modulation Index (MI)
for all pairs of frequencies (Tort et al. 2010). Data from all trials were concatenated
(separately for spontaneous and speech-related activity) across all trials beforehand. To
compute MI, in each condition, signal amplitude values x(fump, 7, sen) were binned in N =18
different bins according to the simultaneous phase of X(fouase?,5em). For spike phase-
amplitude coupling, we defined spike gamma amplitude as the number of Gi neurons
spiking at a given gamma burst, and the spike theta phase was defined by linear

interpolation from -z for a theta spike burst to +x for the subsequent theta burst.

Simple temporal patterns decoding

We first explored the model’s performance using simple sawtooth signals (Shamir et al.
2009), representing prototypical realizations of formant transitions in a given frequency
band. Each stimulus consisted of a rising component between 0 and 1, followed by a decay
component from 1 back to 0. The overall length of the sawtooth was 50 ms, and the
relative position of the maximal point #.4x between the starting point #s74rr and end point
tavp was defined by a variable a = (tyux-tsrart)/(tenp-tstar)

The input connectivity had to be slightly modified since sawtooths are one-dimensional
signals in contrast to the multi-dimensional channel signals that we have to use for speech
stimuli: for 7e units, we used I;-" =20, and for the connections to Ge units in line with the
original model (Shamir et al. 2009), we used different input levels across the population,
ranging from 0.125 to 4 in 0.125 intervals. The rest of the model remained unchanged.

We simulated the response of the network to a series of 500 sawtooths with parameter a
taking one of 10 equally spaced values within the [0 1] interval. Interstimulus interval (IST)
varied randomly between 50 and 250 ms.

We compared the model’s performance for different neural codes. For the “stimulus
timing” code (see Results section), we extracted the spike pattern of output (Ge) neurons
between 20 ms before and 70 ms after of each sawtooth onset. We computed the distance
between all output spike patterns using a spike train distance measure (Victor and Purpura

1997), implemented in the Spike Train Analysis Toolkit (http://neuroanalysis.org/toolkit/).

We used a shift cost of 200 s corresponding to a timing resolution of 5 ms. We decoded
the peak parameter using the simple leave-one-out clustering procedure of the STA toolkit,
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using a clustering exponent of -10. By comparing the ‘decoded parameter’, i.e. the
parameter corresponding to the closest cluster, to the input sawtooth parameter, we built
confusion matrices and computed decoding performance.

In the “theta-timing” code, we extracted the spike pattern of output neuron in windows
starting 20 before a theta burst and finishing 20 ms after the next theta burst (‘theta
chunks’, Figure 4A). Spike times within each chunk were referenced with respect to the
onset of the window. Each spike pattern was labelled with the corresponding value of the
stimulus if the theta burst occurred during the presentation of the stimulus, or with the
label ‘rest’ if the theta burst occurred during an interstimulus interval. The same decoding
analysis was applied on such internally referenced neural patterns, yielding a 11 x 11
confusion matrix (10 stimulus shapes and rest). Detection theory measures (hits, misses,
correct rejections and false alarms) were computed by summing values in blocks of the
confusion matrix (of size 10 x 10, 10 x 1, 1 x 10 and 1 x 1 respectively). A classification
confusion matrix was obtained by removing the last row and last column of that confusion
matrix.

We run the same decoding analysis on variants of the network: the full network; a control
model where 7e units do not receive the sawtooth input (undriven theta network) and
another control where theta-gamma connections were removed (uncoupled theta-gamma

network).

Syllable decoding from sentences

The classification procedure was similar for syllable decoding, where we tried to decode
the identity of syllables within continuous stream of speech (full sentences) from the
activity of output neurons. We stimulated the network by presenting 25 sentences from the
TIMIT corpus repeated 100 times each. We extracted theta chunks of Ge spike patterns as
explained previously. Each chunk was labelled with the identity of the syllable being
presented at the time of the first theta burst of the chunk. We randomly selected 10
syllables from the whole set of syllables within the 25 sentences. As in some cases there
were several consecutive theta chunks corresponding to the same syllable, we equated the
total number of theta chunks per syllable by randomly selecting 100 theta chunks labelled
with each of the 10 syllables. Syllable classification of theta-chunked Ge spike patterns
was performed using two different neural codes. For the spike pattern code, we applied the
same procedure as for sawtooth classification, using a smaller value of spike shift cost

corresponding to a timing resolution of 60 ms. For the spike count code, we measured the
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number of spikes emitted by each (Ge neuron within a theta chunk. We then ran a simple
nearest mean classification procedure to decode syllable identity corresponding to each
theta chunk from the spike counts of all Ge neurons (see Classification analysis below).
Both methods relied on the leave-one-out procedure that consists in identifying a chunk
after the decoder was trained on all chunks but the to-be-decoded one. Decoding was
repeated 200 times using each time a different set of 10 random syllables, and the analysis
was performed over all three variants of the network.

For syllable classification across speakers, we used the two sentences from the TIMIT
corpus that have been recorded for each of the 462 speakers ('She had your dark suit in
greasy wash water all year' and 'Don't ask me to carry an oily rag like that') and trained
the network to classify syllables based on the neural output from other speakers, thus
testing generalization across speakers. There is a wide variability of pronunciations over
speakers as attested by the variability of chain of phonemes labelled of phoneticians, but
the two sentences could nonetheless be parsed into 25 syllables overall for each speaker.
We simulated the network presenting these 924 sentences and used the theta-chunked
output to decode syllable identity. The method used was very similar to the syllable
decoding analysis, where we classified theta-chunked neural patterns into one of 10
possible syllables (drawn randomly from the set of 25 syllables), with the only difference
that here the classifier was based on theta chunks coming from different speakers. The

classification was repeated 100 times for different subsets of syllables.

Neural encoding properties: classification analysis

The first analysis of neural encoding properties consisted in comparing the ability to
classify neural codes from the model into arbitrary speech segments (as opposed to
syllables as in previous section). The methods, as detailed below, were inspired by the
decoding of neural auditory cortical activity recorded in monkeys in response to
naturalistic sounds (Kayser, Ince, and Panzeri 2012). We simulated the network by
presenting 25 different sentences from the TIMIT corpus repeated 50 times each. For a
given window size (ranging from 80 to 480 ms in 80 ms intervals), we randomly extracted
10 windows (defined as stimuli) from the overall set of 25 sentences. We then retrieved
stimulus identity based on the activity of a neuron that was randomly drawn from the Ge
population using three different neural codes. In the neural count code, we counted the

number of spikes emitted by that neuron within each window. In the time-partitioned code,
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we divided each window into N equally size bins, and computed the number of spikes for
each of the 8 bins separately. In the phase-partitioned code, we divided the window based
on theta-phase- rather time- intervals: each spike was labelled with the phase of the theta
oscillation at the corresponding spike time, and we computed the number of spikes falling
into each of the NV subdivisions of the [-w;x] interval.

We then used a nearest-mean template matching procedure to decode the stimuli. To
classify each stimulus exemplar using each neural code, we averaged the vectors over all
presentations of each stimulus using a leave-one-out procedure; we then computed the
Euclidian distance from the current vector to each of the 10 stimulus-averaged template.
Finally we ‘decoded’ the neural code by assigning it to the stimulus class with minimal
distance to template. A more detailed explanation of the procedure is provided in the
original experiment article (Kayser, Ince, and Panzeri 2012). The procedure was repeated
1000 times, each time with a different set of 10 random stimuli, and performed the 3

variants of network.

Neural encoding properties: Mutual Information analysis

We complemented the stimulus classification with a similar analysis using mutual
information between the acoustic ‘stimulus’ and response of individual Ge neurons to
further characterize the encoding properties of the network. Mutual Information (MJ)
estimates the reduction of uncertainty about the acoustic ‘stimulus’ that is obtained from
the knowledge of a single trial of neural response. The dataset was identical to the one
previously used for stimulus classification analysis, where each stimulus was again
segmented into non-overlapping windows of length T (here 8 to 48 ms) (Kayser et al.
2009; de Ruyter van Steveninck, Lewen, and Strong 1997).

Mutual Information was computed for the same neural codes as in Kayser et al. (2009).
We used Spike count code and Time-partitioned code as described above (for the Time-
partitioned code the size of the bins was kept constant to 8 bins; the number of bins in a
window hence increased with window size. As slow LFP phase was more reliable over
sentence repetitions than power, we combined spike count and LFP theta phase to get a
Spike count & Phase-partitioned code (Montemurro et al. 2008). For this code, the phase
of slow LFP was divided into N=4 bins, and the firing rate in each window was labelled
according to the phase at which the first spike occurred. Finally we explored the influence
of slow LFP phase on MI when combined with temporal spiking patterns. Thus, in the

Time- & Phase-partitioned code spikes carry two distinct tags, the first one referring to the
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position of the spike inside one of the four subdivisions of the stimulus window, the
second indicating the phase of the underlying LFP at the moment of the spike occurrence.

We corrected for sampling bias (Kayser et al. 2009) first by using a shuffling method
(Panzeri et al. 2007), then the quadratic extrapolation method (Strong et al. 1998). We
further reduced the residual bias using a bootstrapping technique (200 resampled data)

(Montemurro et al. 2008).
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Figure legends

Figure 1. Network architecture and dynamics

A. Architecture of the full model. 7e excitatory neurons (n=10) and 77 inhibitory neurons
(n=10) form the PINTH loop generating theta oscillations. Ge excitatory neurons (n=32)
and Gi inhibitory neurons (n=32) form the PING loop generating gamma oscillations.
Te neurons receive non-specific projections from all auditory channels, while Ge units
receive specific projection from a single auditory channel, preserving tonotopy in the
Ge population. PING and PINTH loops are coupled through all-to-all projections from
Te to Ge units.

B. Network activity at rest and during speech perception. Raster plot of spikes from
representative 77 (dark green), 7e (light green), Gi (dark blue) and Ge (light blue).
Simulated LFP is shown on top and the auditory spectrogram of the input sentence
"Ralph prepared red snapper with fresh lemon sauce for dinner" is shown below. Ge
spikes relative to theta burst (red boxes) form the output of the network. Gamma
synchrony is visible in Gi spikes.

C. Evoked potential (ERP) and Post-stimulus time histograms (PSTH) of 7e and Ge
population from 50 simulations of the same sentence: ERP (i.e., simulated LFP
averaged over simulations, black line), acoustic envelope of the sentence (red line,
filtered at 20 Hz), PSTH for theta (green line) and gamma (blue line) neurons. Vertical
bars show scale of 10 spikes for both PSTH. The theta network phase-locks to speech
slow fluctuations, and entrains the gamma network through the theta-gamma
connection.

D. Theta/gamma phase amplitude coupling in Ge spiking activity. Top panel: LFP
gamma envelope follows LFP theta phase in single trials. Bottom-Left panel: LFP
phase-amplitude coupling (measured by Modulation Index, MI) for pairs of frequencies
during rest, showing peak in theta-gamma pairs. Bottom-right panel: MI phase-
amplitude coupling at the spiking level for the intact model and a control model with no
theta-gamma connection (red arrow on A panel), during rest (blue bars) and speech

presentation (brown bars).

Figure 1 — Figure Supplement 1: Spectral analysis
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A. Theta phase pattern (left panels) and theta power pattern (right panels) for 50
presentations of the same sentence in the uncoupled theta-gamma control model (top
panels) and intact panels (bottom panels). Phase/power is binned into 4 different bins
and colour coded. Theta phase is much more reliably imprinted by speech stimulus than
power.

B. (Left panel) Spike phase-amplitude coupling: mean value for PING amplitude
(defined as the number of Gi neurons spiking within a gamma burst) as a function of
PINTH phase (defined from interpolation between successive theta bursts). Intact model
is shown in black while the uncoupled theta-gamma model is shown in blue. Data for
rest (thick dashed lines) and during processing of speech (full thick lines) almost
perfectly match. Thin dashed lines represent s.e.m. Spike PAC was very strong in the
full model but quasi-absent when the theta-gamma connection was removed. (Right
panel) Spontaneous spike phase-frequency coupling: mean value for PING frequency
(defined from the duration between successive gamma bursts) as a function of PINTH
phase. Same legend as left panel. Spike PFC is strong when and only when the theta-
gamma connection is present (significant coupling p<10~ for both speech and rest).

C. Phase-locking of the theta and gamma oscillations to speech. Phase concentration of
the filtered LFP theta (top panel) and gamma (bottom panel) signals through time for
200 presentations of the same sentence (same as Figure 1B-C). The horizontal orange
bar indicates the presentation of the sentence. There is a rapid transition from uniform
theta distribution before sentence onset to perfectly phase-locked theta. Phase-locking

vanishes at the end of sentence presentation.

Figure 2. Theta entrainment by syllabic structure
A. A. Theta spikes align to syllable boundaries. Top graph shows the activity of the theta
network at rest and in response to a sentence, including the LFP traces displaying strong
theta oscillations, and raster plots for spikes in the 77 (light green) and 7e (dark green)
populations. Theta bursts align well to the syllable boundaries obtained from labelled

data (vertical black lines shown on top of auditory spectrogram in graph below).

B. Performance of different algorithms in predicting syllable onsets: Syllable
alignment score indexes how well theta bursts aligned onto syllable boundaries for each

sentence in the corpus, and the score was averaged over the 3620 sentences in the test
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dataset (error bars: standard error). Results compare Mermelstein algorithm (grey bar),
linear-nonlinear predictor (LN, pink) and theta network (green), both for normal speed
speech (compression factor 1) and compressed speech (compression factors 2 and 3).
Performance was assessed on a different subsample of sentences than those used for

parameter fitting.

Figure 2 — Figure Supplement 1: TIMIT corpus and models used for syllable
boundary detection
. Acoustic analysis of TIMIT corpus. Leff panel: Speech modulation frequency
increases with syllabic rate. All 4620 sentences of the TIMIT corpus (Test dataset) were
sorted into quartiles according to syllabic rate (i.e. number of syllables per second).
Speech envelope spectrum (with 1/f correction) was averaged over all sentences within
each quartile, and the four averages are plotted. Color bars on top of the graphs
represent the syllabic rate range for all four quartiles, showing a correspondence
between the modal frequency and the syllabic rate over the corpus. Middle panel:
Average channel spectrum. Spectrum were taken for each 128 auditory channels of the
Chi and colleagues pre-cortical auditory model (Chi, Ru, and Shamma 2005), averaged
over all sentences in the corpus. All channels show a clear peak in the same 4-8 Hz
range, showing that the theta modulation is very present in the input to auditory cortex.
Right panel: Syllable onset corresponds to a dip in spectrogram. Average of auditory
spectrogram channels of sentences phase-locked to syllable onsets. t=0 (green line)
corresponds to syllable onset. Red colours correspond to high value, blue colours to low
values. Dip at syllable onset is particularly pronounced over medium frequencies
corresponding to formants. Auditory channels were averaged over all syllable onsets
over the entire corpus (4620 sentences). This plot shows the connection between
syllable boundaries and fluctuations of auditory channels that the auditory cortex may
take advantage of in order to predict syllable boundaries.

Theta network model. Left panel: The architecture of the theta model is the same as
the full model network without the PING component. Speech data is decomposed into
auditory channels as in the LN model, and projected non-specifically onto 10 7e
excitatory neurons. The 7e population interacts reciprocally with 10 77 inhibitory
neurons, generating theta oscillations. Theta bursts provide the model prediction for

syllable boundary timing.
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C. 7e neurons burst at speech onset: 7¢ neurons provide onset-signalling neurons that
respond non-specifically to the onset of all sentences. The spikes from one 7e neuron
were collected over presentation of 500 distinct sentences, and then referenced in time
with respect to sentence onset. Here sentence onset was defined as the time when
speech envelope first reached a given threshold (1000 a.u.). Spikes counts are then
averaged in 20 ms bins, showing that this neuron displays a strong activity peak 0-60
ms after sentence onset. A secondary burst occurs around 200 ms after onset, as present
in the example neuron shown in Brasselet et al. 2012.

D. Model of linear-nonlinear (LN) predictor of syllable boundaries. Auditory channels
are filtered, summed and passed through a nonlinear function: the output determines the
expected probability of syllable onset. A negative feedback loop prevents repeated onset
at close timings. Values for filters, nonlinear function and feedback loops are optimized
through fitting to a sub-sample of sentences.

E. Stimulus-network coherence. Theta phase (4-8 Hz) was extracted from both the
simulated LFP and speech input. Coherence at each data point was computed as the
Phase-Locking Value of the phase difference computed from 100 simulations with a
distinct sentence. Coherence established in the 0-200 ms following sentence onset to a

stable high coherence value of about 0.4.

Figure 3. Sawtooth classification

A. Gamma spiking patterns in response to simple stimuli. The model was presented
with 50 ms sawtooth stimuli, where peak timing was parameterized between 0 (peak at
onset) and 1 (peak at offset). Spiking is shown for different Ge neurons (y axis) in
windows phase-locked to theta bursts (-20 to +70 ms around the burst, x-axis). Neural
patterns are plotted below the corresponding sawtooths.

B. Simulated networks. The analysis was performed on simulated data from three distinct
networks: ‘Undriven-theta model’ (no speech input to 7e units, top), ‘Uncoupled
theta/gamma model’ (no projection from 7e to Ge units, middle), full intact model
(bottom).

C. Classification performance using stimulus vs. theta timing for the three simulated
networks. The stimulus timing (light bars) is obtained by extracting Ge spikes in a
fixed-size window locked to the onset of the external stimulus; the theta timing (dark

bars) is obtained by extracting Ge spikes in a window defined by consecutive theta
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bursts (theta chunk, see Figure 3A). Classification was repeated 10 times for each
network and neural code, and mean values and standard deviation were extracted.
Average expected chance level is 10%.

D. Stimulus detection performance, for the intact and control models. Rest neural
patterns were discriminated against any of the 10 neural patterns defined by the 10
distinct temporal shapes.

E. Confusion matrices for stimulus- and theta-timing and the two control models
(using theta-timing code). The colour of each cell represents the number of trials
where a stimulus parameter was associated with a decoded parameter (blue: low

numbers; red: high numbers). Values on the diagonal represent correct decoding.

Figure 4. Continuous speech parsing and syllable classification

A. Decoding scheme. Output spike patterns were built by extracting Ge spikes occurring
within time windows defined by consecutive theta bursts (red boxes) during speech
processing simulations. Each output pattern was then labelled with the corresponding
syllable (grey bars).

B. Syllable decoding average performance for uncompressed speech. Performance for
the three simulated models (Figure 3B) using two possible neural codes: spike count
and spike pattern.

C. Syllable decoding average performance across speakers, using the spike pattern
code. Syllable decoding was optimal when syllable duration was within the 100-300 ms
range, i.e. corresponded to the duration of one theta cycle. The intact model performed
better than the two controls irrespective of syllable duration range. Chance level is 10%.
Colour code same as B.

D. Syllable decoding performance for compressed speech for the intact model using the
spike pattern code (same speaker, as in B). Compression ranges from 1 (uncompressed)

to 3. Average chance level is 10% (horizontal line in the right plot).
Figure 4 — Figure Supplement 1. Syllable classification across speakers.
A. Distribution of syllable duration across 2 sentences and 462 speakers. The

shaded area (100-300 ms) indicates region of maximal density. Extreme values

probably correspond to ill-defined syllables.

35

94



Figure 5. Comparison with encoding properties of auditory cortical neurons.

A. Neural codes. Stimulus decoding was performed on patterns of Ge spikes chunked in
fixed-size windows (the figure illustrates the pattern for one neuron extracted from one
window). Spike count consisted of counting all spikes for each neuron within the
window. Time-partitioned code was obtained in dividing the window in N equal size
bins (vertical grey bars) and counting spikes within each bin. Phase-partitioned code
was obtained by binning LFP phase into N bins (depicted by the four colours in the top
graph) and assigning each spike with the corresponding phase bin.

B. Spike pattern decoding. (Left) Decoding performance across Ge neurons for the intact
model using N=8 bins for each code: spike count (black curve), time-partitioned (blue
curve) and phase-partitioned codes (green curve). (Right) Data from the original
experiment. Adapted from Kayser et al., 2012.

C. Mutual information (MI) (Left) Mean MI between stimulus and individual output
neuron activity during sentence processing in the intact model for spike count (black
curve), time-partitioned (blue line), combined count and phase-partitioned (green line)
and combined time- and phase-partitioned codes (red line). (Right) Comparison with

experimental data from auditory cortex neurons (adapted from Kayser et al., 2009).

Figure 5 — Figure Supplement 1: Speech decoding performance and MI (control
models)

A. Stimulus decoding performance for each neural code across Ge neurons for the
control models (left:undriven theta; right: no theta-gamma connection): spike count
(black line); time-partitioned neural code (blue line); phase-partitioned neural code
(green line).

B. Stimulus decoding performance as a function of bin number, for all three variants of
the model and experimental data. The number of bins used to partition the spikes was
varied from 2 to 16, while the duration of the window was kept at 160 ms. Each dot
corresponds to the average over 1000 different sets of stimuli and neuron (bars represent
s.em.). Data from the original experiment, recording auditory cortex neurons from
monkeys listening to naturalistic sounds. Experimental data are reproduced qualitatively
by the intact model but not by the control model. Adapted from Figure 3E of Kayser et
al, 2012.

C. Mutual Information (MI) between acoustic stimulus and individual Ge neurons for

the control models (left: undriven theta; right: no theta-gamma connection): spike
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count (black line); time-partitioned neural code (blue line); phase-partitioned & spike

count neural code (green line); phase- and time- partitioned neural code (red lines).

Both control models display low MI values and fail to display the pattern of

experimental data shown in figure 5B.

Tables

Table 1. Full network parameter set

Parameter C Viur | Vreser Vi 143 gL 8ceci | &cice 87e.Ge
Value 1F/em2 | -40mV | -87mV | -100mV | -67mV | 0.1 5/Nge 5/Nai 0.3/Nre
R R R D DC DC

Parameter TGe TTe Tgi r;r TGe Tgi IGe IGi
Value 02ms | 4ms | O05ms | Sms | 2ms | 20ms 3 1

Table 2. Optimal parameters for the LN model
Parameter g et T, DC

sp

Value 0.0748 1.433 0.4672

Table 3. Optimal parameters for the theta model
Parameter | oy, | 0, =0, =0g |2, | & | I§5 | 1R¢ 125 | Griri| Grive | gk
Value 0.282 2.028 24.3 | 30.36 15 1.25 0.0851 0.432 | 0.207 | 0.264
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Figure 1 - Model Architecture
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Figure 3 - Classification of model responses to simple stimuli
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Figure 5 — Comparison of different neural codes
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SUPPLEMENTARY METHODS

Syllable boundary prediction algorithms

Syllable boundaries triggered average (STAs) were computed as follow: for each syllable
boundary (syllable onsets excluding the first of each sentence), we extracted a 700 ms
window of the corresponding locked to the syllable boundary and averaged over all
syllable boundaries. STAs were computed for speech envelope and for each channel of the
Chi et al. (Chi et al., 2005) model.

Predictive models

We compared the performance of four distinct families of models to predict the timing of
syllable boundaries based on speech envelope or speech audiogram: the Mermelstein
algorithm (see below), a Linear Non-linear (LN) model (a simplified integration-to-
threshold algorithm, see below), the entrained theta neural oscillator (see below) and a

purely rhythmic control model (see below).

1. Mermelstein algorithm

The Mermelstein algorithm is a standard algorithm that predicts syllable boundaries by
identifying troughs in the power of the speech signal (Mermelstein, 1975; Villing et al.,
2004). The predicted boundaries are computed according to the following steps. First,
extract the power of speech signal in the 500 — 4000 Hz range (grossly corresponding to
formants) and low-pass filter at 40 Hz to remove fast fluctuations, defining a so-called
loudness function. Second, for each sentence, compute the convex hull of the loudness
signal and extract the maximum of the difference between the loudness signal and its
convex hull. If that difference exceeds a certain threshold 7, and if the peak intensity of
the interval of no more than P, smaller than the peak intensity of the whole sentence,
then that time of maximal difference is defined as a predicted boundary and the same
procedure is applied recursively to the intervals to the left and right of that boundary.
Parameters 7, and P were optimized to yield minimum prediction distance (see

below), yielding 7,in = 0.152 dB and Pex = 15.85 dB.

Note that this algorithm cannot be run online since the convex hull at a given time depends

on the future value of speech power. Thus syllable boundaries can only be predicted after a
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certain delay, which makes it impractical for online speech comprehension as occurring in

the human brain.
2. LN model and variations

To evaluate the capacity of a simplified neural system to predict syllable boundaries, we
trained a generalized linear point process model on the syllable dataset. The model (figure
2 — Figure Supplement 1D) does not incorporate full neural dynamics but simply
comprises a linear stimulus kernel followed by nonlinear function. The process issues a
‘spike’ or ‘syllable boundary signal’ whenever the output reaches a certain threshold
(Pillow et al., 2008). This signal is fed back into the nonlinear function (another kernel 7/
is used here): such negative feedback loop implements a relative refractory period. This
model is a generalization of the Linear-Nonlinear Poisson model, hence we refer to it
simply as LN model. We used the 32 auditory channels as input to the model and trained it
to maximize its syllable boundary prediction performance.
We looked for a linear filter that is separable in its temporal and spectral component. We
first computed the Spike Triggered Average (or rather ‘Syllable Boundary Triggered
Average’) for all 32 channels from 600 ms to 0 ms prior to the actual boundary in 10 ms
time steps. Yet S74 provides the optimal estimate for the linear kernel in a LN model only
when stimulus consists of uncorrelated white noise (Chichilnisky, 2001). To get the
optimal values out of the white noise condition, we looked at the separable filter H that
yields best prediction of the output:
minH (< |(Y(t) — Y(t|H)|? >), where :
- Y(t) is a binary output equal to 1 if there is a syllabic boundary in the 10 ms
interval, O otherwise
- His separable spectrotemporal filter (i.e. H(w,u) = S(w)T(u) for all orders u and all
frequencies w. S and T are, respectively, the spectral and temporal component of
filter H.
- \_‘;(1|H) = Zu‘w H(w, u)X(w, t — u) where X(w,t) is the value of auditory channel

@ at time step t.

Optimal solutions of the system verify:
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Z'l‘(u)R(w, ") = Z SEOTWTW)M(w, &,u,v) Vo

uv,é

ZS((U,)R((U, u) = Z S(@)SE)TW)M(w, &, u,v) Vu

w
where R(w,u) = (Y()X(w,0)), (i.e. R is the Spike Triggered Average)

and M is the covariance tensor for X ie.

M(w, & u,v) = cov(X(w,t —u),X(&, t —V))-

Solutions to 7'and § for that system of equations can be approximated numerically
using the following iterative procedure:

So(w) =1V, Ty(u) =1 Vu

s — ( ToR yr
T e Ta(WOT, (VM (W, v, .,.)
RS,
Tn+l = ( - - = T T )
Em{ Sns1(@)Sp1M(w,§,.,.)
and then stopping when the resulting square error

[|1RSy = X6 Sns1(@)Sps 1 ) T(WI)M(w, &, ., l‘)||; goes below a minimum value (we used a

threshold of 10~ ). The first 6 components (i.e. time bins) of the temporal kernel (i.e. 0 —
50 ms) were also used for input convolution in the theta model. We did not integrate
further components (60 — 400 ms) since their weight was much lower and its
implementation by relay neurons seemed less realistic.

To retrieve the optimal value for all parameters of the model, we used the GLM matlab
toolbox developed in the Pillow lab (http://pillowlab.cps.utexas.edu/code GLM. html),
using as input the one-dimensional signal U(t) = ¥, S(w)X(w,t). Other parameters of the
LN model including the self-inhibition temporal kernel /4 were optimized using the
gradient descent implemented in the toolbox. This method provides estimation for a
stochastic generalized LN model. We were interested in assessing the performance of a
deterministic LN model. We then run a deterministic model with the same parameters as
the stochastic model plus one new free parameter describing the normalized time to next
spike (in the stochastic model, that time is drawn from an exponential distribution). The

t

next .. . e e .
value of “sp was optimized using the same minimization procedure used for others

models (see below). Two other parameters were also optimized again, since this procedure
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minimized a different score than the GLM toolbox score: time scale of self-inhibition = Fih

and constant input to the model DC (Table 2).

We made one last modification to this LN model. We optimized the model such that
it would maximally fire not at the time of syllable boundaries but 10 ms posterior to that
time (de facto, we simply slid the STA window by 10 ms). This provides a delayed signal
but likely more reliable since it can use more information (notably the rebound in the

auditory spectrogram that is present right after a syllable boundary).

3. Theta model
The theta model is composed of the 7e and 77 cells from the full network model described
above, with the exact same parameter set. 11 parameters were optimized in the full model,

10 in the control model (see values in the Table 3).

4. Control model
The control model was used to provide a baseline for assessing the performance of other
models. Under these control conditions, predicted syllable boundaries were generated
rhythmically at a fixed time interval, irrespective of the stimulus. The rate of the rhythmic
process was varied from 1 Hz to 15 Hz in 0.5 Hz intervals. Such control model yielded
better performance than another control model consisting of a homogeneous Poisson
process. It thus provides a more stringent control for estimating the efficiency of other

algorithms.

Model performance evaluation

We evaluated how well syllable boundaries predicted by any model matched with the
boundaries derived from labelled speech data. As an evaluation metrics we used a point
process distance that is used to compare distance between spike trains (Victor and Purpura,
1997). Shift cost was set to 20 sec”’ (in other words, a predicted and an actual boundary
could be matched if they were no more than 50 msec apart). The distance was summed
over all sentences used in the dataset, and normalized by the sum of all actual and
predicted boundaries over the dataset.

We also assessed performance of the models by reporting standard measures of the
detection theory. Each actual boundary was counted as a hit if it was distant by no more
than a time jitter of 50 ms to any predicted boundary. Actual boundaries with no associated
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predicted boundary was termed misses. Predicted boundaries with no associated actual
boundary were termed false alarms.

We finally computed frue positive rate (TPR) and false positive rate (I'PR) over a set of
sentences as follows:

TPR = X hits / (2 hits + X misses )

PR = X false alarms / (X false alarms + X hits )

where X represents the sum over all simulations. Note that FPR here differs from the
standard definition of False Positive Rate since correct rejection events cannot be defined
in a point process detection task. TPR and FPR for each model are then plotted in a ROC

curve for model comparison.

Neither of those measures was adequate to compare the performance of the same model
(here, the theta model) across different levels of speech compression. To draw such
comparison, for each level of compression, we computed the (non-normalized) distance
measure for the theta model summed over all sentences in the test dataset, as well as the
average number of predicted boundaries per sentence. We then matched the theta model to
a control rhythmic model with the same predicted syllabic rate, and computed the
difference between the non-normalized distance for the theta model and for that matched

rhythmic model.

Optimisation

We optimized the parameters from all models (except the control model for which we used
the whole range of values of the rate parameter) to get the minimal normalized point
process distance between predicted and actual boundaries in each sentence. Optimization
was made using global gradient descent (function fininsearch in Matlab), and repeated with
many initial points to avoid retaining a local minimum. Although both the theta model and
the control model are intrinsically stochastic, the sample size was large enough for the
objective function over the entire sample to be nearly deterministic, allowing for
convergence of the gradient descent algorithm. The list of optimized parameters for each
type of model is provided in the related model sections above. We split the entire TIMIT
TRAIN dataset (4620 sentences) into two datasets: a first dataset of 1000 sentences was
used to compute optimal parameters; final assessment of an algorithm performance with its

optimal parameters was done on a separate set of 3620 sentences.
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Table 1. Parameter set

Table 2. Optimal parameters for the LN model

Table 3. Optimal parameters for the theta model

Parameter Nre Mri=Nee=Nei 0 ™ [ ;-:‘
Value 0.282 2.028 243 3036 15
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11.2 Analytical insights on Theta-Gamma coupled neural oscillators
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Abstract In this paper, we study the dynamics of a quadratic integrate-and-fire neu-
ron, spiking in the gamma (30-100 Hz) range, coupled to a delta/theta frequency (1-
8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to
derive characteristic spiking times for the system in two distinct regimes (depending
on parameter values): one regime where the gamma neuron is intrinsically oscillating
in the absence of theta input, and a second one in which gamma spiking is directly
gated by theta input, i.e., windows of gamma activity alternate with silence periods
depending on the underlying theta phase. In the former case, we transform the equa-
tions such that the system becomes analogous to the Mathieu differential equation. By
solving this equation, we can compute numerically the time to the first gamma spike,
and then use singular perturbation theory to find successive spike times. On the other
hand, in the excitable condition, we make direct use of singular perturbation theory to
obtain an approximation of the time to first gamma spike, and then extend the result
to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit

L. Fontolan (&)

Department of Fundamental Neurosciences, CMU, University of Geneva, 1 rue Michel Servet, 1211
Geneva, Switzerland

e-mail: lorenzo.fontolan @unige.ch

M. Krupa

INRIA Paris-Rocquencourt Research Centre, Domaine de Voluceau BP 105, 78153 Le Chesnay,
France

e-mail: maciej.p.krupa@gmail.com

A. Hyafil - B. Gutkin
Group for Neural Theory, Départment des Etudes Cognitives, Ecole Normale Supérieure, 5 rue
d’Ulm, 75005 Paris, France

A. Hyafil
e-mail: alexandre.hyafil @gmail.com

B. Gutkin
e-mail: boris.gutkin @ens.fr

@ Springer

106



Page 2 of 20 L. Fontolan et al.

formulas for the onset and offset of gamma spike burst during a theta cycle, and pro-
vide an estimation of the total number of spikes per theta cycle both for excitable and
oscillator regimes.

Keywords Oscillations - PING - Dynamical systems - Geometric singular
perturbation theory - Blow-up method - Spike times - Theta-gamma rhythms - Type I
neuron - SNIC bifurcation

1 Introduction

Oscillations of neural activity are ubiquitous in the brain in many frequency bands
[1], and it has been often argued that they play a functional role in cortical processing
[2-4]. Physiological experiments and computational models have shown that ongoing
brain oscillations are involved in sensory-motor functions [5], synaptic plasticity [6],
memory formation and maintenance [7], among many other cognitive tasks. Indeed, it
has been reported [2] that intrinsic brain rhythms can bias input selection, temporally
link neurons into assemblies, and facilitate mechanisms that cooperatively support
temporal representation and long-term consolidation of information. Notably gamma
oscillations (>30 Hz) are prominent in neocortex during attention [8], sensory pro-
cessing [9, 10], or motor control tasks [11], together with slower thythms in the theta
(3-8 Hz) or delta (1-3 Hz) range that have also been linked to various aspects of
cognitive processes like working memory or the transmission of sensory and motor
signals.

Many recent contributions point to nontrivial interactions among different fre-
quency bands [12—14], such as phase-amplitude [15, 16] or phase-phase coupling
[17, 18] that can facilitate the simultaneous integration of multiple layers of informa-
tion [19]. The hippocampus is a privileged site for observing such interactions [11,
20], since theta and gamma waves are particularly strong and reliable in that region
[21]. Another particular case is represented by perception of speech signal performed
by auditory cortex. In fact, to capture the many different relevant features of speech
(i.e., syllables, vowels, consonants, etc.), the brain must be able to parse the speech
signal over these many time-scales at the same time. A number of recent works intro-
duced the hypothesis that a network of nested theta (3—8 Hz) and gamma (30-100 Hz)
rhythms could accomplish this task [22-24], given their matching in frequency with
syllabic and phonemic time-scale, respectively. Since there is no external onset sig-
naling the presence of an incoming syllabic content, the phase of the gamma rhythm
needs to be reset by some intrinsic mechanism, e.g., by theta input [23]. It becomes
therefore important to know the time to first spike, which would be a measure of the
speed of gamma phase resetting, as well as the time to last spike and the spiking
frequency during excitable period.

There is a large literature on mathematical analysis of single frequency oscillators
in networks of cortical circuits [25-31], and much work has been done in computa-
tional modeling of neural oscillations [2, 32, 33]. There is also a significant number
of mathematical studies on cross-frequency interactions, however, most of that anal-
ysis is limited to the cases of weak coupling [34-37]. Strong coupling case has been
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analyzed either with pulsatile coupling [25, 38, 39] or with semianalytical and com-
putational techniques [40-42]. Importantly, the question of how strong continuous
coupling between slow and fast oscillations influences frequency and time of fast
spikes has not been treated analytically, at least to the best of our knowledge. Yet
experimental data suggest that phase-amplitude coupling in the brain is continuous
(i.e., low-frequency phase is conveyed through local field potential, a continuous sig-
nal) and strong [15, 39, 41], so this will be the regime we aim to study in the present
work.

In this article, we provide analytical insights on the precise spiking times of a
simplified Pyramidal Interneuron Network Gamma (PING) [41] during theta modu-
lation. Two separate cases are studied: In the first setting, which we will refer to as
oscillatory regime, the gamma network behaves as an intrinsic oscillator whose spike
frequency is modulated by the theta phase; in the second, named excitable regime,
gamma spikes are only evoked when input coming from the theta oscillator is strong
enough. In the latter case, the system is in an “excitable” regime, where theta pushes
gamma back and forth across a Saddle-Node on Invariant Circle (SNIC) bifurcation.
The analysis can be generalized beyond theta-gamma nested oscillations; indeed it
describes any coupling between low and a high frequency rhythms [43], provided
that the latter is produced through feedback inhibition to the excitatory cell. To com-
pute the time to the first gamma spike, we used different approaches for the two
regimes: In the oscillatory case, we reduce the system in order to describe its dynam-
ics with the Mathieu equation [44], and in the excitable case we apply an extension
of geometric singular perturbation theory [45-47]. We then use a combination of the
two to get successive spike times and an estimation of the total number of spikes per
theta cycle.

The paper is organized as follows:

1. In Sect. 1, we introduce the system to be studied.

2. In Sect. 2, we consider the system in the oscillatory regime and compute time to
first gamma spike using Mathieu functions. We found that spike time is mainly
determined by the magnitude of theta-gamma coupling (A) and of theta frequency.

3. In Sect. 3, we turn our attention to the excitable regime where theta phase deter-
mines the magnitude of input, thereby causing the gamma circuit to spike.

4. Finally, we show that our approach gives results in agreement with direct numeri-
cal simulations of the system of interest.

In our analysis, we use tools from geometric singular perturbation theory. This ap-
proach normally fails in proximity of nonhyperbolic points, as it would be the case
for the system considered in the present paper, but the blow-up method extension
provided in [48] allows us to compute approximations of the passage time to the first
spike in the excitable case, and it is used both in the oscillator and excitable cases
to estimate the duration of inhibition and the passage time of subsequent spikes. The
latter estimates are based on the idea that inhibition puts the system in a state of quasi
equilibrium; consequently, they work well if inhibition is strong and excitation not
too high.
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decay, so that almost no residual inhibition is present at the beginning of a new theta
cycle. In order to obtain an equation in the form of Mathieu equation, we first perform
a change of variables in system (1) Vg =tan %, going from 6-variable to membrane
voltage VE. As it is known [40], 6-neuron is formally equivalent to the Quadratic
Integrate and Fire (QIF) neuron:

dVg(t
;x( L VRO + I+ 1(1 + cos(®)).
2
e
— = EnW.
ar ¢

The two neural models are formally equivalent if we define the reset conditions as
VE(I*—O)I—i-OO, VE(Z‘*—i-O):—OO,

where 1* the time of spike. We have omitted the synaptic input dynamics since we
assume that inhibition is directly enslaved to spikes coming from EG neuron, hence
the inhibitory synapse sy stays inactive up to the first EG spike. We restate the system
in (2) as a single equation, assuming by convention that ® = —m at ¢ =0 (or at the
beginning of a new theta cycle):

dVg ()
dt

=VE() + I + A(1 +cos(epot — ). 3)
For Ig > 0, this equation has an exact solution in terms of Mathieu functions. This
can be found by imposing one more change of variable:

7

Vg = —”;7 u(t) = e~ VEMIT, )

where the prime mark denotes the time derivative (a similar transformation is used in
[50] where the cosinusoidal forcing term was replaced by exponential decay, leading
to a different solution of the corresponding differential equation). Hence, we write
(3) as a second-order differential equation:

u" = —(Ig + (1 + cos(ep ot — m)))u. (5)

If parameters a, g, z are rescaled as following:

epwt 4(Ig +2) 2A
= T, =7 9= (6)
8@0) 8@0)
then Eq. (5) has the form of a Mathieu equation:
d%u
pE —(a —2gqcos(22))u. (7)

To interpret Eq. (7), we need temporal rescaling from ¢ to z, and as a consequence

the period of cosinusoidal term, which in Egs. (1) and (2) was T = SZQ”w, becomes
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2 Theta-Gamma Coupled Oscillator

We consider a minimal formulation of a theta modulated gamma spiking network.
One single Excitatory Gamma (EG) neuron (6g), modeled as a 0-neuron [49] re-
ceives an excitatory input coming from an oscillator (&) whose natural frequency
lies in the theta band. The canonical 8-neuron model is described by a phase vari-
able lying on a one-dimensional circle in the range 0 € [—x, 7), a spike is produced
when g = . The EG neuron participates in a PING rhythm, although in our case
the inhibitory gamma neuron is instantaneously enslaved to the excitatory cell, mean-
ing that every excitatory spike would immediately prompt a simultaneous inhibitory
spike [32]. This allows us to suppress the explicit dynamics of the inhibitory gamma
neuron and focus on inhibitory synaptic dynamics only. Our system can be described
by the following equations:

do
d—f = (1= cos@p)) + (Ig + 2 (1 + cos(®)) — grrs1) (1 + cos(@p)),

d

=L = —ers1 + 805 — ). (1
a6

e

where ® € [—m, ) is the instantaneous phase of the slow rhythm variable (delta/theta
frequency band, i.e., 1-8 Hz), which provides the sinusoidal modulatory input to the
EG cell; sy is the variable representing the activation of the inhibitory synapse; Ig
represents constant driving input to excitatory gamma neuron; A is the strength of
theta-gamma coupling; ggy is the inhibitory synaptic strength; « has been chosen
so that frequency o falls into the theta range; 7 is a scaling parameter that scales
inversely with the time constant of synaptic inhibition; &g is a second, slower, scaling
parameter that has been chosen such that eg ~ e%, an assumption that is motivated by
biophysical considerations and, in addition, keeps the three time scales (theta thythm,
synaptic inhibition, and excitatory membrane potential) well separate.

We will consider two cases: the oscillator case, defined by Ir > 0, and the ex-
citable case, defined by Ir < 0. The characterizing feature of the oscillator setting
is that 6g—s; subsystem in (1) is an intrinsic oscillator at every stage of a ®@-cycle,
i.e., the total current input to EG neuron is always positive. In the excitable case, on
the other hand, part of theta oscillation period is such that ¢ subsystem of (1) has
an attracting quasisteady state, i.e., the total input to the EG neuron is negative or
positive depending on &-oscillator phase. If I < —2A, the net input to EG neuron
is always negative and the gamma circuit is always silent.

3 Time to First Spike, Oscillator Case
Let us consider the case in which constant driving term I in system (1) is positive
and such that, in absence of theta modulation, the EG neuron would fire periodically

with a spiking frequency in the gamma range (30-150 Hz). We assume that the dy-
namics of the theta oscillator is at least one order of magnitude slower than synaptic
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decay, so that almost no residual inhibition is present at the beginning of a new theta
cycle. In order to obtain an equation in the form of Mathieu equation, we first perform
a change of variables in system (1) Vg =tan %, going from 6-variable to membrane
voltage VE. As it is known [40], 6-neuron is formally equivalent to the Quadratic
Integrate and Fire (QIF) neuron:

dVg(t
;x( L VRO + I+ 1(1 + cos(®)).
2
e
— = EnW.
ar ¢

The two neural models are formally equivalent if we define the reset conditions as
VE(I*—O)I—i-OO, VE(Z‘*—i-O):—OO,

where 1* the time of spike. We have omitted the synaptic input dynamics since we
assume that inhibition is directly enslaved to spikes coming from EG neuron, hence
the inhibitory synapse sy stays inactive up to the first EG spike. We restate the system
in (2) as a single equation, assuming by convention that ® = —m at ¢ =0 (or at the
beginning of a new theta cycle):

dVg ()
dt

=VE() + I + A(1 +cos(epot — ). 3)
For Ig > 0, this equation has an exact solution in terms of Mathieu functions. This
can be found by imposing one more change of variable:

7

Vg = —”;7 u(t) = e~ VEMIT, )

where the prime mark denotes the time derivative (a similar transformation is used in
[50] where the cosinusoidal forcing term was replaced by exponential decay, leading
to a different solution of the corresponding differential equation). Hence, we write
(3) as a second-order differential equation:

u" = —(Ig + (1 + cos(ep ot — m)))u. (5)

If parameters a, g, z are rescaled as following:

epwt 4(Ig +2) 2A
= T, =7 9= (6)
8@0) 8@0)
then Eq. (5) has the form of a Mathieu equation:
d%u
pE —(a —2gqcos(22))u. (7)

To interpret Eq. (7), we need temporal rescaling from ¢ to z, and as a consequence

the period of cosinusoidal term, which in Egs. (1) and (2) was T = SZQ”w, becomes
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Fig.1 Oscillatory 2
regime—dynamics of

theta-modulated EG neuron in 1] BN
absence of inhibition. Red line:
membrane voltage of EG neuron
in presence of theta modulation |
(blue line) without inhibitory
synaptic input (g7 = 0).
Solution u(t) to Mathieu
equation is plotted in yellow
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T* = 7. The solutions to Eq. (7) are linear combinations of the even and odd Mathieu
functions [44], Ce(a, q, z) and Se(a, q, z), respectively. The solution

u(z) =2(-27Ce(a, q,0) + cowCe(a,q,0)Se(a, q. 2)
+ Cela, q,2)(4nSe(a, q,0) — 2epwSe(a, ¢,0))),

obeys the desired initial conditions, where the dot indicates the derivative with respect
to z. Because of the change of variable in (4), the spiking times in the absence of
inhibition correspond to the zeros of the solution of (7) u(z) (Fig. 1). Hence, by
scaling back to the original variables and looking at the first zero of u(z) we obtain
the time to the very first spike 77. We numerically compute the time to the first spike
as a function of parameters @ and ¢, i.e., Ig and A. The subsequent spikes, on the other
hand, depend on inhibition, and thus cannot be described by (3) alone. We looked for
solutions of (2) with initial condition Vg (0) = —oo and & (0) = —x. Figure 2 shows
the time to first spike 77 as a function of A with Ir fixed at three values, I = 0.01,
Ir =0.05, and Ir = 0.1. Note that for Ir = 0.01 the dependence on A is strong,
but for larger values of I the sensitivity of 77 with respect to A is smaller, since Ig
becomes the dominant input term. In the next section, we will consider the case when
inhibition is strong and fully controls the gamma spikes.

4 Time to First Spike, Excitable Case

The excitable case implies that Ir < 0, and 21 4+ Ig > 0. Under these assumptions,
the gamma spikes are only possible when @ lies in a proper subinterval of [—x, ),
which corresponds to the values of & for which A(1+cos(®))+ Ig > 0. This ensures
that the dynamics of (1) cross the SNIC bifurcation for a certain value of cos(®). We
carry out the computation with the initial conditions

O = 0o, O =—m, sp =0, ®

where —m < 6y < 0 is defined by the condition (1 — Ig)cosbp =1+ Ig,ie. 6y is a
stationary fixed point in the absence of & positive input. The gamma neuron relaxes
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35 T T T T T

Time to first spike (ms)

Fig. 2 Oscillatory regime—time to first spike. Time to first spike as a function of coupling constant A, for
I =0.01, Ig =0.05 and Ig = 0.1. Black line: simulation; red dotted line: solution to Mathieu equation.
g =001, w=4

to 6p when theta modulation is turned off. Note that 6 = 6p is not required for our
solution to be applicable, since, for any initial value i, < 0o, O quickly converges to
0p. At the end of every theta cycle sy goes back to zero, since its decay constant &7 is
one order of magnitude bigger than g, and the EG cell has stopped firing once inhi-
bition pushed it below the SNIC bifurcation. We start by computing an estimate of the
time to the first gamma spike. System (1) involves two time scales, one that controls
the intrinsic dynamics of the EG neuron and the other comes from & modulation.
In the excitable case, rather than using the approach based on Mathieu functions,
we use geometric singular perturbation theory. This approach leads to explicit esti-
mates of the onset and duration of the gamma burst, it gives some geometric insights
and can be applied in a more general setting. In order to compute the time at which
the fast and the slow dynamics intersect, we need the value of & corresponding to
Ig +A(14cos(®)) =0, i.e., where the SNIC bifurcation takes place. Simple algebra
shows that this occurs when
LM+ Ig

cos(@) = — T )

To ensure that (9) has solutions, we verify that the RHS of (9) is in the interval
(—1, 1). For the upper bound, we have

M+ Ig
D+l >0 = A>—(p+r) = 1>— ,

The lower bound is obtained as follows:
M+ Ig —Ig
— =l — > -1
py Tt
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Fig. 3 Excitatory regime—phase plane. Phase portrait of system (1) for /g = —0.5, A =1, ¢g = 0.01,
@ = 4. The blue line represents the trajectory of the system when starting from initial conditions (6p, —m):
it passes along the nullcline %ﬁi =@, ©®) =0 (in red) and then quickly escapes to (i, ©1) once past
the singular point (0, ®q). The dotted purple line shows that, for any starting point (&, 0g) where © < ©g
and O < 6, the trajectory converges to the blue line

given that _TIE > 0. Let now &g be a solution of (9) satisfying —7 < & < 0 and let
us consider system (1) with initial conditions (8): it is clear that any trajectory of the
system can roughly be divided into two separate chunks (see Fig. 3). Starting from
point (6g, —m ), the system immediately enters the slow motion part of the trajectory,
which is adjacent to the nullcline % = ¢(0r, ®) = 0. The slowest region of mo-
tion lies in the vicinity of the singular point (0, ®p), where both ¢ (Of, @) and its
derivative with respect to O are zero. Once the trajectory has gone beyond the singu-
lar point, ¢ turns positive again and grows quadratically in magnitude. This way 0g
quickly reaches the value 6 = m, since it is well known that any unbounded solution
of the theta neuron for positive net input explodes in finite time. At the same time ®
increase is of order «~ O(gp ). Now let us start by computing the time spent along the
fiber which is close to the nullcline, and then direct our attention to the motion in the
neighborhood of the singular point. The time needed for @ to grow from —z to Gy

equals

Op+m

*
7 =
Epw

(10)

When ® reaches @, 0 is O (o) (recall that this is also O (£2)) close to the threshold
value of O = 0. In order to estimate the time that EG neuron needs to produce the
first spike, i.e., to reach 0 = &, we need to examine the behavior when close to
point (0, ®p). We first translate the variable @, introducing O=6 — ®p. Using
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Taylor expansion around 0 ~ 0 and & ~ @, we can write
1 —cos(0p) %eg +0(0).
Ip 4. (1+c08(8)) = /= Ig 21 + Ip)6 + 0(8?).
We transform (1) to the coordinates (O, @), taking into the account the expansion

(11) and ignoring s; which remains zero until the first gamma spike (we omit the
tilde for the simplicity of notation). The resulting system is

(11

do 1
—L —ae + -0} + 0(0},0%,0}26),
dt 2
(12)
de
ar e
with a =24/—Ig QA + Ig).
We then rescale the variables of (12) as follows:
2 . &pwa
O =2x, O =-y, &= .
a 2
In terms of the rescaled variables, with the tilde omitted, system (12) becomes
dx 2 4 2 2
— =fxy)=y+x+ 0 y% x%y),
dt
(13)
dy
— =
dt

This means that the nullcline of system (13) for ¢ = 0, defined by the parabola
f(x,y)=0,1is a good approximation for the nullcline of system (1) in the neigh-
borhood of the singular point (0, ®g), or equivalently, in coordinates (x, y), the point
(0, 0). Thus system (13) has the same form as system (2.5) in [48] and can be restated
as a Riccati equation:

dx v+ x2

i (14)

By performing a change of variable, it can be shown that (14) is equivalent to a
second-order Bessel equation. The following function is a general solution of (14):

J_232y%2/3) — cJpy3(2y%/2/3)
cJ_13Q2y32/3) + J13(2y3/2/3)

¥ =L =—Vv (13)

where J, are Bessel functions of the first kind of order v. The only solution ap-
proaching the left branch of the nullcline parabola for y < O is the one obtained by
choosing ¢ = 1, thus we pick this value of ¢. The inverse of function ¢ (y), namely
Ex)= C‘l(y), defines the trajectory of x as a function of y (Fig. 3). Unfortunately,
due to its highly nonlinear form, it is impossible to compute directly.
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We use these results together with Theorem 2.1 and Remark 2.11 in [48] in order
to derive the following estimate (the result dates back to much earlier, see for example

[51D).

Proposition 1 Let yo > 0 and xo < 0 satisfy f(xo, yo) = 0. Also fix § > 0. Consider
a family of solutions of (13) with initial conditions x (0) = xo + O (&) and y(0) = yo.
Let (8, h(¢e)) be the intersection point of this trajectory with the line x = 8. Then, for
sufficiently small 8,

hie) = 20?2 + O(elne), (16)

where $§2y stands for the smallest positive zero of the denominator in (15):

7y3/2 7y3/2
J_1/3< y3 )+Jl/3< y3 )

From now on, we will use the numerical approximation

20 ~ =2.34.

Note that the solution with initial conditions (8), transformed to the coordinates
(x, y), satisfies the assumptions of Proposition 1. Therefore, estimate (17) holds.

Now let T be the time the of the first gamma spike, i.e., when 6 = . From (16),
it is easy to see that, after scaling back to the original variables (0g, @, o), 11 can
be written as

Op+m C
T = ———+ —x + Ollneo), (17)
Epw e
2]
with
21/390
= 18

The O(lngp) term in (17) and the following one, of order O (1) in ¢, happen to
be zero in the theta neuron model (as well as in the QIF model) when there is no
excitatory feedback from the EG cell to the theta band oscillator (see the Appendix).
The next nonzero term in (17) is then of order O(sg 3), which represents the error
with respect to the time at which the true trajectory of the system reaches 0 = 28.
The value of § does not have to be small, on the contrary our approximation works
better when § is such that the trajectory of the system is close to the asymptote & =
Cowe?f , as it is the case for the EG cell spike threshold § = Z.
Predictions of Proposition 1 are illustrated in Figs. 3 and 4.

S Subsequent Gamma Spikes, Oscillator Case

In the oscillator case, we assume that inhibition is strong enough to push the system
below the SNIC bifurcation, regardless of the value of @, i.e.,

g1E > Ig + 2A. (19)
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80 T T T T

Time to first spike (ms)

Fig. 4 Excitable regime—time to first spike. Time to first spike as a function of coupling constant A, for
Ig = —0.5, Ig = —0.1 and Ig = —0.02. Black full line: simulation; red dotted line: analytic solution.
g9 =001, w=4

If the opposite is true, the system does not encounter the bifurcation, since % is

always greater than zero, and our analysis cannot be applied to subsequent spikes.
We wish to derive an estimate on the number of EG spikes occurring along one &
period, which is given by the time needed for & to grow from — to 7, thus equal
to 2n/(epw). Let Tp, ..., Tt be the subsequent gamma spikes and &, ..., @, the
corresponding values of @. Let Tj* be the relative time after T;_1 at which the total
driving input to the EG neuron reaches zero from negative values:

Ir + 1 (1 +cos(@)_1 + o T})) — grpe™ "7 =0. (20)
From now on, we use the fact that ep ~ 8%, and relabel ¢; = ¢. Hence, we can write
cos(@;_1 + e?0T}) ~ cos(@;_1) —sin(@; e’ T} Q@

We expect T]?" to be of order O (~1) from (20), cos(® j—1) is then large compared to
sin(® j_l)eza)Tj*. We can thus replace (20) by a simpler formula:

sTj* _ 8IE ) (22)
Ig + 1(1 4 cos(®;_1))
Now
1
TF=-In 81 : (23)
J & Ig +A(1+cos(®@;_1))
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We denote the time interval between two successive gamma spikes by AT; and use
the following estimate:

AT] = T] — Tj—l ~ T;k + T;k*’

where
£20
(Ig +1(1 +COS@]'_1))1/3 )

Estimate (24) is obtained analogously as (17). We can write the modulated instanta-
neous Interspike Interval (ISI), i.e., the instantaneous period, as

TH=Cpe™'P, Cj=- (24)

AT =L s1E - L 2 5)
77 e T\ g+ 2(14cos(@;_1)) el3 (Ig + 1(1 +cos ©;_1 )13
We derive the intrinsic period of PING in absence of any modulation:
1 (giE 20
ATV = ZIn( =2 ) - —. 26
J e ( Ig ) el3 ]y (26)

After some algebra and performing a second-order Taylor expansion around
®;_1~ —m,ie., when theta excitation is minimal, the ISI becomes

1 $20A
m[_(@j—l+7f)2i|- 27

I
AT ATIN ___—_ (0, +m)?—
/ I e2lg 61"

The smallest ISI is obtained by expanding around &;_; ~ 0, i.e., when theta excita-
tion is maximal:

‘ 1T [Ip+2) )
AT™0 —ATIV _ 2|} - cH
j A 2p+2n) i

1 1 1 .
~am 2\ G A s o )] (28)
81/3[ 0<(1E+2M1/3 1 6Up+ 2% !

from (27) and (28) we can estimate respectively the lowest and highest gamma fre-
quencies attained during theta modulation. We then derive an expression for the in-
terval of time AT between the first to the last gamma spike within half a & -period:

Moy

1
AT == Zln( S1E )
& Pt Ip + (1 +COS(@]'_1))

1 a —$20

MR ,; (Ig + 11 +cos(®;—pN/3’

(29)

where My is the number of gamma spikes as @ varies between —n and 0. Writing

1 Mo

s m( QIE )%1/0 1n< 8IE >d@
My = Ig + (1 +cos(@;-1)) TSy Ig + A (1 +cos(®))
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Fig. 5 Oscillatory regime—dynamics. Two cases in which formula (31) gives a correct prediction of the
number of gamma spikes and a fair estimate of spike times. Upper panel: instantaneous firing frequency of
gamma cell obtained from simulation (full red line) and from Eq. (25) (black dotted line). Lower panel: the
simulation of EG cell membrane potential is shown in red while black dotted lines represent firing times
predicted by our analysis; the blue curve shows theta modulation (1 4 cos ®). Left: I = 0.5, ¢ = 0.1,
A=038,871g =6, w=4.Right: I =0.1,6=0.1,1.=0.5,2;g =6, w =4

and
1 A —2 1[0 — 2
e Z ~— de
My = (Ig + 21 +cos(®;,_pN3 7 J_p (Ig + M1 +cos(@))/3
we obtain

0
%(e/ ln< 81E )d@
b4 - \Ug+r(1+4cos(®))

T f O i 46 )~ (30)
o Uz + 200+ cos@) 17 o

As My provides an estimate for the number of gamma spikes as & grows from —m
to 0, the total number of gamma spikes M is the largest integer such that

ﬂ(e/” 1n< S1E )d@
7\ )\ T teos@)

" —2 27
5/3 0 2n
e /_n (Ig + (1 +Cos(@)))1/3d@) < (3D

This formula works well, especially when inhibition is sufficiently strong. Figure 5
shows two cases where the formula gives the exact prediction of the number of
gamma spikes and a good approximation of spike times. It is worth to mention that
in the oscillatory case there is no phase reset at the end of a theta cycle, meaning
that the initial conditions are never the same at the beginning of a theta oscillation.
As a consequence, the result in (31) does not hold as a rigorous solution but as an
average estimate, and the exact number of spikes can still vary over different trials. In
Fig. 6, we show the direct comparison between the predictions of the formula and the
simulation, as a function of A. Note that for A very small the estimate of the formula
is too big. There we would need to include more terms in the & expansion to get a
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18

Number of gamma spikes
N
Number of gamma spikes

Fig. 6 Oscillatory regime—number of spikes. Number of spikes in the simulation (blue) and the predic-
tion of the formula as a function of A varying from O to (g7g — Ig)/2, @ = 4. In the left panel Ig = 0.7,
e=0.1, g7 =4. Inthe right panel I =05, =0.1, gjp =6

more accurate prediction. When A is large, for fixed gy, the positive input is such
that inhibition is not sufficient to periodically time the spikes. As a consequence, the
estimate of formula (31) becomes too small.

6 Subsequent Gamma Spikes, Excitable Case
6.1 Second Gamma Spike
Let T, be defined by
I 4+ 2(1+cos(0(T1 + T;'))) — grpe ™2 =0. (32)
Note that
O(T1 + I}) = 01 + we T} = Oy + weTjf + 0(*?) + O(e*lne?).  (33)

but, similarly to the oscillator case, we expect T to be of order O (e from (32).
This allows us to neglect the last two terms on the RHS of (33). Hence, by (32) and
(33), we have

T _ SIE . 34
¢ A(—sin(@g)e20 T + 0 (e¥/3)) .

Further, we write
T =—Ine —Iln(—1ng) + A, (35)
and substitute into (34) getting

_ 1 oA — 8IE
elne —1s8in(@g)ws(—1Ine —ln(—1n(e)) + A)

(1 8IE 1
T\ elne J\ —Asin(@g)w / (1 — (—In(—1n(e)) + A)/Ine)
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Fig. 7 Excitable regime—dynamics. Three cases for which formula (31) gives a correct prediction of the
number of gamma spikes. Plot colors as in Fig. 4. ©g and 27 — &, i.e. the theta phases where the first
and last Hopf bifurcation approximately take place, are shown in cyan. o =4, ¢ =0.1 and gjg = 6. Left
panel: I = —0.1, . = 1. Right panel: Ig = —0.5, . =1

N 1 8IE In(—In(e)) A\
N<_elne><—ksin(@o)w><1_ Ine +E)’ (36)

A gIE In(—In(e))
N—— 4+ O ——— ). 37
¢ Asin(®g)w + < Ine (37
It then follows from (35) that keeping only the leading terms:
Ine
D~——+T1T1 and Oy~ —welne+ O;. (38)
&

6.2 Subsequent Gamma Spikes

We can write a variant of estimate (31) for the excitable case:

M 2m—6y
—(e/ ln( S1E )d@
20y o Ig + A(1+cos(®))

N 1 26
+e T5d0 ) < —. (39)
0 (Ig + A1 4cos(@))H/ ®

where now the extremes in the integrals are chosen to be the times of the first and
last gamma spikes (i.e., the times when the EG neuron crosses the SNIC bifurcation
respectively from below and above), assuming that these would be approximately
symmetric with respect to the ® cycle.

This formula works adequately for large inhibition and relatively small (nega-
tive) Ig. Otherwise, due to the intricate interplay between the growth of @ and the
decay of s almost to O (witnessed in the computation of 73), it is not sufficient to have
just the lowest terms of the & expansion of AT;. Figure 7 shows two cases where the
formula gives the exact prediction of the number of gamma spikes. In Fig. 8, we show
the direct comparison between the predictions of the formula and the simulation, as
a function of A. For A large inhibition is too weak to time the spikes and the estimate
of the formula becomes too small.
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Fig. 8 Excitable regime—number of spikes. Number of spikes in the simulation (blue) and the prediction
of the formula as a function of A. Left panel: I = —0.1, g = 6, = 0.1, = 4. Right panel: Ip = —0.5,
giE=6,¢=01,0=4

7 Conclusions and Future Directions

In this paper, we investigated how a continuous, strong, low frequency (1-10 Hz)
modulation determines the spiking properties of a simplified PING oscillator. This
work has been particularly motivated by recent investigation on the role of theta-
gamma interactions in processing speech signals [52]. Syllabic input are in fact
known to possess a quasiperiodic structure matching theta frequency [24]. Within
this framework, theta-modulated gamma spikes need to be aligned to the onset and
the offset of linguistically relevant chunks [23]. It is then crucial to understand the
timing of gamma spikes and the way they are influenced by theta input, since theta
is supposed to detect the presence of long timescale syllabic content. It remains to
be unveiled whether the scaling we analytically determined here is produced in more
realistic models for speech processing [52] currently under development. Indeed, this
result could also be used for other purposes: investigating how theta fluctuations mod-
ulate gamma firing in the hippocampus; determining the impact of alpha oscillations
on higher frequencies (including gamma), which are thought to carry bottom-up in-
formation in visual perception. Indeed timing of first spike is assumed to be particu-
larly relevant in visual cortex, since it is has been shown that it would facilitate the
neural encoding of stimuli [53].

To explore the dynamics of the system, we split the problem into two parameter
regimes: In the first, the frequency of gamma spikes is only modulated by theta phase,
while in the second the gamma cell would only fire if forced by theta input. In the
former regime, by restating the problem in form of a Mathieu differential equation
and looking at the first zero of the Mathieu function solving the initial value problem,
we were able to find the time to first gamma spike. In the latter, we separate the
dynamics into three time scales, one characterizing EG neuron dynamics in absence
of any external input, one for theta dynamics, and one for synaptic inhibition, and we
approximate the time to first spike by using an extension of the geometric singular
perturbation theory based on the application of the blow-up method [46, 48].

Computations align with the intuition (arising from the fact that 0g is a type 1
neuron) that time to first spike decreases in both cases with coupling strength A and
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constant driving current /g . Interestingly, in the excitable case, we found that time to
first spike depends approximately on 2 ~1/®, which implies that it saturates rapidly as
A grows. As a second notable result, 77 scales as co/€o + c1 /sg 3 + O(In(ep)), ¢o
being the speed of theta cycle. Building on these results, we subsequently computed
the time to successive spikes in both regimes, where inhibitory synaptic decay time
becomes an important factor. For both regimes were able to compute approximate
spike times and predict the exact number of spikes per theta cycle (and instantaneous
frequency of firing as a direct consequence) in a range of parameter values that leads
to firing within the gamma frequency band.

In the present work, we analyzed a simple system in which coupling was limited
to a feedforward theta-gamma connection. It would be a natural next step to extend
the analysis to bidirectional coupling by including a feedback from gamma spikes
to the & oscillator. A second assumption we made in constructing our system stated
that the gamma circuit internal delay between excitatory and inhibitory spikes was
negligible, meaning that both cells would fire at exactly the same time. To make the
model more biologically appealing, one could relax this hypothesis by introducing a
synaptic delay after an excitatory spike and study the correspondent system (i.e., a
full PING). For relatively short delays, we would expect the results obtained in this
paper to hold at least qualitatively. Throughout this paper, we considered gamma to
be a simplified PING generator, on the other hand it still remains an open question
whether the same characteristics of theta-gamma modulation we explored here would
still be found in a different gamma generator, €.g., an Interneuron Network Gamma
(ING) network [54] that can still be implement with Type I neurons as in the case of
this work.
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Appendix
We show that the term of order O(Ingg) in expansion (17) is zero in our model. The
subsequent term, of order O (1) is also zero, but we do not include the result here
since computations are long and heavy. The interested reader could derive this result
from [51].
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In the absence of any synaptic input from the inhibitory neuron, we restate system
(1) to reduce the complexity of notation:

dx
—- =0,y = (1= cos)) + (I + A(1 + cos())) (1 + cos(y),
4 (40)
d—f =eY(x,y)=cw.
Then, following [51], we write the expansion
Oo+m C
T\ =———+ 5+ Dolneo + Eo + 0(2¢)°), 41
Epw 5@
which approximates the time to the first spike in the excitable case.
Coefficient Dg in (41) might be written as
Do = 11 600 ($)Yx (S) = 2002x (SHP(S)
39(S) 3p2,.(S)
1 Y (S)y/2/19xx (S)py ()]
— =¥ (S| —— sign gy (5), (42)
6 V2(8)y/10xx ($)/ 2y (S))]

where S stands for the coordinates of the singular point S = (0, ®¢) and subscripts
indicate the derivatives, i.e., ¢x (S) is the first derivative of ¢ with respect to x, taken
at (0, ®g). It is easy to verify that any derivative of ¢ with respect to x of order n, for
n 0dd, is equal to zero at S. Furthermore, since ¥ (x, y) is constant in system (40),
¥y (S) is clearly zero. Hence, Do = 0.
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The fact that feed-forward and top-down propagation of sensory information use distinct
frequency bands is an appealing assumption for which evidence remains scarce. Here we
obtain human depth recordings from two auditory cortical regions in both hemispheres, while
subjects listen to sentences, and show that information travels in each direction using
separate frequency channels. Bottom-up and top-down propagation dominates in y- and 6-f8
(<40Hz) bands, respectively. The predominance of low frequencies for top-down
information transfer is confirmed by cross-regional frequency coupling, which indicates that
the power of y-activity in Al is modulated by the phase of 6-f activity sampled from
association auditory cortex (AAC). This cross-regional coupling effect is absent in the
opposite direction. Finally, we show that information transfer does not proceed continuously
but by time windows where bottom-up or top-down processing alternatively dominates.
These findings suggest that the brain uses both frequency- and time-division multiplexing to
optimize directional information transfer.
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popular view of brain functioning is that the central

neural system minimizes its reaction to environmental

stimuli by predicting probable events and inferring their
most probable causes' . This mechanism ensures that reactions
are appropriate, that is, maximal for unexpected events and
minimal to frequent ones, irrespective of their magnitude.
Functionally, predictive coding is a possible realization of the
anticipatory function of the brain®% Tt assumes that the
mismatch between descending and ascending information is
assessed at each processing level, possibly at the cortical column
scale®, so that only the error signal is further propagated. This
theory is seducing because it offers a parsimonious computational
mechanism to flexibly minimize stimulus-driven information,
depending on the stage where stimulus features are anticipated,
from sensory to high-level action representations’ . The
predictive coding framework potentially accommodates a
number of well-known psychophysical and macroscopic
neurophysiological phenomena, such as priming, repetition
suppression and mismatch negativity»!0-12. At the biophysical
and mechanistic levels, however, there are virtually no data
showing how predictive coding could operate. Only a few
theoretical proposals attempt to describe how predictions and
prediction errors are computed and how information is being
transferred in each direction®.

One of those stipulates that ascending and descending
information could be conveyed via distinct frequency channels,
the y- and f-channels for up- and downgoing information,
respectively”!. This would imply that the brain uses
multiplexing'#'® as a means to transmit signals of different
nature and content in parallel and opposite directions. In
particular, top-down (T-D) f-activity could provide a
modulatory gain on lower-tier y-activity'®!7. In the context of
predictive coding, a frequency dissociation between bottom-up
(B-U) and T-D information transfer, with slower rates for T-D
mechanisms, could be accounted for by the fact that T-D-
propagated signals (predictions) follow from the linear
accumulation of prediction errors®.

Experimental evidence of a spectral dissociation for up- and
downgoing information remains scarce and not unequivocal.
When probing two hierarchical regions of the monkey visual
cortex during a spatial attention task, the y-up/f-down scheme
was only partly confirmed!®. Moreover, even if spectral
multiplexing would keep B-U and T-D information apart, a
scheme with only two modulation bands (fand y) and one carrier
(high-y) might be underspecified®.

Here we explored whether the human brain propagates B-U and
T-D signals using distinct frequency bands. We used human depth
electrode recordings made at locations corresponding to two
successive steps in speech processing? (Fig. 1). We examined the
directionality of cross-regional interactions using non-parametric
Granger causality (GC)?'?2 to establish the dominant direction of
information flow within specific frequency bands, and cross-
regional phase-amplitude coupling to address whether high-
frequency power in one region was modulated as a function of
the phase of low-frequency activity in the other one (see Fig. 1a).
By restricting cross-regional coupling results to those frequency
domains where causality is significant, we show that B-U and T-D
information transfer dominates in high- and low frequency-
domains, respectively, and proceed in a discontinuous fashion,
suggesting both frequency and time division are used to unmix
up- and downgoing information in the brain.

Results
Characterization of intra-cortical responses to speech. We
present results from three epileptic subjects who underwent a
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simple experiment during which they passively listened to spoken
sentences. The protocol was part of a larger one involving more
speech material (syllables and words)?* aiming at investigating
speech-specific responses throughout the temporal cortex. We
focused on the sentences data set and analysed intracortical activity
from depth macroelectrodes located in primary (Al) and
association auditory cortex (AAC) regions (Fig. 1b) in response
to passive listening of 110 repetitions of 2.5-s long sentences. We
assumed that spoken sentences had sufficient duration and
complexity to engage B-U and T-D information transfer. One of
the three subjects (S1) was implanted bilaterally in the two
temporal lobes at identical functional locations (Fig. 1b). The two
other subjects were implanted in the left (52) or the right (S3)
temporal lobe, for a total of two subjects per hemisphere and
location. The limited number of subjects is inherent to the method
as depth electrodes are rarely inserted in humans’ auditory cortex,
and more rarely at equivalent functional sites in the left and right
hemispheres. We analysed signals from the electrode contacts
showing the most typical evoked electrophysiological landmarks of
Al and AAC (typical latencies and auditory-evoked response
shapes; see Methods). The corticograms obtained for all subjects at
each location confirmed distinct response patterns in Al versus
AAC regions (Fig. 2a-d, upper panels). Cross-correlating the
wideband stimulus envelope?*2> with the cortical responses (see
Methods) emphasized the functional distinction across hierarchical
levels (Fig. 2a—d, lower panels). In A1 y-activity correlated with the
speech acoustic structure, whereas, consistent with a more
integrated function of higher-level regions, y-activity in AAC
(left dominant) was largely induced and independent from fast
acoustic modulations. Frequency-specific interactions between the
acoustic speech signal and the intracortical electroencephalography
(iEEG) were also observed in the 4/6-band in all regions, and in the
low f-band (around 12-14Hz) in all regions except in the right
AAC. Finally, in accordance with a weaker specialization for
speech of right temporal regions, stimulus/brain cross-correlations
were overall stronger in the left than in the right Al (Fig. 2a,b,
lower panels), and y-induced responses in AAC were drastically
left dominant (Fig. 2¢,d, upper panels).

Cross-regional GC. We examined directed functional connectivity
between Al and AAC across the whole iEEG spectrum. We
compared propagation directions by computing non-parametric
GC in the frequency domain®'? on a trial-by-trial basis for each
subject (see Methods). We further averaged the GC time-frequency
(TF) patterns across time, trials and sentences. In both the B-U
(Al causing AAC activity) and the T-D (AAC causing Al)
analyses, we found several GC peaks distributed between 1 and
140 Hz (Supplementary Fig. 1 and Table 1 for details in the
1-20Hz range). We observed that GC values were overall larger at
low than at high frequencies. This global decrease in GC values
might be related to the power law decay in the amplitude spectrum
of brain activity?S, as GC is sensitive to asymmetries in the power
spectra. Critically, we found a dominance of T-D GC in the low
part of the spectrum (<40 Hz) and of B-U GC at high frequencies
(>40TIz). This effect was confirmed using two complementary
statistical approaches (Fig. 3a,b versus Fig. 3c), and the spectral
division of B-U and T-D was consistent across subjects (and
hemispheres). Although B-U dominance above 40Hz is in line
with the hypothesis that the brain mostly uses the y-channel to
propagate sensory information forward, T-D GC dominance was
not limited to the f-range®”'3, but broadly covered the whole
0-f-range. In the left hemisphere, we additionally found several
discrete GC peaks in the B-U direction within the 1-20 Hz range.
The B-U and T-D GC peaks did not align across subjects (Fig. 3,
Supplementary Fig. 1, insets and Table 1), yet in each individual
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Approach 1: Granger casuality

Does the signal at a given frequency in AAC
predict the signal at the same frequency in A12

A1: Beta phase

Approach 2: Directional nesting

Does the phase of low-frequency signal in ACC
modulate the power of high-frequency signal in A12

A1: Gamma power

e

EE \VEAVEVAVAVAVES AAC:Beta phase

Figure 1| Experimental approach and electrodes position. (a) Experimental approach and hypotheses. We explored the processing of speech in auditory
cortex through two distinct tests: GC, which allows for testing causal relationship between different regions within the same frequency band; and
directional phase-amplitude coupling that examines phase-power dependencies both across brain areas and across frequencies. 8- and y-Frequencies were
of particular interest in view of our working hypotheses. (b) Example of electrode positioning. In S1, electrodes were positioned at equivalent locations on
each hemisphere in Al and auditory association cortex (AAC). The electrode contacts used along the shaft were selected based on their anatomical

location and functional responses (typical shape and latencies of evoked responses'

B-U and T-D directions appeared spectrally non-overlapping
(Supplementary Fig. 1, insets): B-U GC peaks aligned to the
troughs of T-D GC peaks and vice versa. Such a frequency splitting
might indicate that specific sub-ranges within the J-f domain
(<40Hz) specialize in directional information transfer, even
though T-D overall dominates in this frequency range. Altogether,
these results are consistent with the hypothesis that the brain uses
distinct frequency channels to propagate feed-forward and
feedback information. However, the picture arising from the GC
data appears more complex than a simple y-up/f-down scheme,
and also involves lower frequencies®”>!3.

Cross-regional phase-amplitude coupling. GC indicated the
predominant direction of information transfer, but did not pro-
vide information about the influence ascending or descending
signals may locally exert on neural activity. We therefore explored
whether low-frequency T-D rhythms influenced distant (for
example, AAC influence on Al) y-power changes, reasoning that
efficient information transfer should modulate the timing and/or
the amount of population spiking at target level?”>?8. In particular,
we tested whether the GC peaks observed in the low-frequency
range (1-20 Hz) were associated with distant y-power changes.
To characterize the influence one region exerted on the region
hierarchically below or above, we examined -cross-regional
nonlinear coupling across frequency bands, as the excitability of
neuronal populations in sensory systems is shaped by low-
frequency oscillations through their phase?»3. To do so, we
computed circular-to-linear correlations that quantify how the
phase of low frequencies sampled in one region co-varies with the
amplitude of higher frequencies in the other region. We
confirmed that cross-regional effects were stronger than local
ones (Fig. 4), that is, within-region phase-amplitude coupling (see
Supplementary Fig. 2 and see Methods). Statistical significance of
phase-amplitude coupling was assessed using a non-parametric
cluster analysis®® (see Methods). For each significant cross-
regional phase-amplitude coupling cluster, we subsequently
confirmed that there was a corresponding GC peak at the
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frequency of the modulating phase (Table 1). In Fig. 4, vertical
shaded bars indicate the overlap of phase-amplitude coupling and
GC peaks. Overall this ensures that the observed modulations of
y-power were driven by the phase of distant lower frequencies.

Consistent with the notion that T-D information propagated in
the low-frequency range has an influence on local y-activity, we
found a modulation of y-power in the left Al as a function of the
phase of f-activity in the left AAC in both subjects (Fig. 4a and
Supplementary Fig. 2). This pattern was similar in the right
hemisphere, even though it survived statistical correction only in
$3 (Fig. 4b). To each T-D (AAC-phase/Al-power) phase-
amplitude coupling cluster corresponded a T-D GC peak at the
phase frequency (Fig. 4, shaded red bars; see Table 1), allowing to
conjecture that the T-D influence of AAC on Al observed with GC
in the low-frequency range was associated with y-power modula-
tion at target level. We also detected a significant modulation of y-
power in AAC as a function of the phase of 6 (1-3Hz) activity
measured in Al. As for T-D effects, B-U GC peaks (Table 1)
aligned with each of these clusters (Fig. 4, shaded blue dotted bars).
Finally, we observed a left dominance of this effect at J-rate, both
with GC (Fig. 3¢) and phase-amplitude coupling (Supplementary
Fig. 3) measures, suggesting that B-U flow was stronger at very low
frequencies (1-2Hz) in the left hemisphere.

Altogether, GC and phase-amplitude coupling measures
concurred to show a frequency division for B-U and T-D
information (ransfer, whereby local y-activity was globally
modulated as a function of distant d-phase in the B-U direction
(Fig. 4, blue clusters) and as a function of distant —f phase in the
T-D direction (Fig. 4, red clusters). These findings suggest that
the multiplexing of B-U and T-D information transfer operates,
at least in part, by varying the modulation frequency of local
y-activity.

Time division in B-U and T-D causality. Directional multi-
plexing by spectral division enables continuous information
transfer in B-U and T-D directions simultaneously. To assess
whether information transfer was indeed continuous in both
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Table 1 | Low frequency peaks in Granger causality.

Frequency peaks Top-down Bottom-up
Peak 1 Peak 2 Peak 1 Peak 2
Hz P-value Hz P-value Hz P-value Hz P-value
ST Left 5 0.05 9 0.01 1 0.05 7 ns.
S2 Left 7 n.s. 13 ns. 2 0.05 10 ns.
ST Right 7 0.01 16 0.05 2 0.05 5 ns.
S3 Right 7 0.01 12 n.s. 3 ns. 9 n.s.

n.s., non-significant.
Low-frequency (1-20 Hz) peaks (2 maximum) for each data set and causal direction (top-down or bottom-up; excerpted from Supplementary Fig. 1. Peaks are sorted in ascending frequency, shown uncer
the Hz columns, with the corresponding significance level (see Methods) shown under P-value columns (statistics are FDR corrected).

directions (and related frequency ranges), we computed GC at  Contrary to what we expected, we did not observe lasting periods
any instant (1 ms resolution) during the processing of auditory ~when GC dominates in one direction or the other. Rather, TF GC
sentences to obtain T-D and B-U GC TF representations. was organized as an alternation of frequency-specific bins,
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Figure 3 | Spectral asymmetry between B-U and T-D using GC. Spectral differences (1-140 Hz) between T-D (AAC to A1) and B-U (A1 to AAC) causal
influences in left and right auditory cortex of subject 1 (a) and subjects 2 and 3 (b). Red and blue lines show, respectively, T-D and B-U predominance,
averaged over time, trials and sentences. Statistically significant differences between T-D and B-U are highlighted (shaded bars; FDR correction; *g<0.05,
**q<0.01). (e) F-values obtained from one-way analysis of variance (ANOVA) analysis for each subject, testing the difference between T-D (red) and B-U
(blue) causal directions. Data from S1 are shown in semi-transparent colours, and data from 52 and S3 in full colours. Only significant values are shown
(P<0.05, Bonferroni corrected). The star further indicates an interaction (two-way ANOVA, see Methods) in the 1-6 Hz range, where B-U GC dominates in

the left hemisphere (P<0.05, Bonferroni corrected).

suggesting that information transfer proceeds by alternating
periods of dominant B-U and dominant T-D (Fig. 5a, cold
colours for B-U and hot colours for T-D). We tested for a
periodicity in the alternation of T-D and B-U GC by computing
the Fourier spectrum of T-D minus B-U TF matrix (Fig. 5b,¢;
false discovery rate (FDR) correction, see Methods).
Although B-U and T-D flow did not use the same frequency
ranges, we found a common low rate temporal arrangement. In
all subjects, a significant temporal modulation at d-rate (1-3 Hz)
was observed (Fig. 5b,¢; see permutation tests in Methods). The
results hence suggest an alternation of dominant T-D and B-U
information transfer approximately every 300-500ms in both

NATURE COMMUNICAT

flow directions. It is important to note that the temporal structure
of GC changes may also reflect that GC is based on a linear model
of temporal dependencies, which cannot account for the
nonlinear dependencies we have established in terms of cross-
regional phase-amplitude coupling. It is hence unclear whether
this alternation would hold for inter-regional cross-frequency
coupling effects.

Discussion
In telecommunications, frequency-division multiplexing refers to
the use of separate carrier frequencies to transmit distinct
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Figure 4 | Cross-regional dominance of phase-amplitude coupling.
Circular-to-linear correlations computed between low-frequency phase
(1-20 Hz) of one region (A1 or AAC) and higher-frequency power
(20-150 Hz) of the other region in left (a) and right (b) hemispheres. B-U
(Al-phase modulating AAC power) and T-D (AAC-phase modulating Al
power) phase-amplitude coupling values were contrasted, with blue and
red clusters indicating B-U and T-D dominances, respectively. In addition,
we controlled that inter-regional cross-frequency dependencies dominated
over local ones, by controlling for local phase, that is, performing the
contrast (T-D—local-AAC)—(B-U —local-AT). Only significant (P<0.01,
cluster corrected) contrasts are reported. Shaded bars represent GC peaks
(see Table 1) overlapping with phase-amplitude coupling results at the
frequency of the modulating phase.

modulated signals on a single physical support®2. In auditory
processing, the notion of multiplexing is increasingly referred to
in a different acceptation, that is, the description of parallel
information processing at several timescales!®!5. Here we
explored the notion that the brain uses directional multiplexing,
whereby B-U and T-D information are propagated using distinct
modulation frequencies and/or different carrier frequencies. This
idea arises from neurophysiological studies showing that the low-
p-range (around 14 I1z) was mostly related to endogenous T-D
process>>~3%. From a theoretical viewpoint, the idea that the brain
constantly compares incoming input with internal represen-
tations™, calls for information processing at different
timescales®”!3 and information unmixing.

The current results indicate a frequency dissociation in
information transfer along the auditory cortical hierarchy: 6-f
frequencies dominated in the T-D direction and y-frequencies in
the B-U direction. These findings support theoretical propo-
sals®!® and complement other results—so far onl partly
conclusive—obtained in humans and monkeys'®**-37. By

6 NATURE COMMU

combining GC and nonlinear cross-regional phase-amplitude
coupling, we further show that T-D processes operated by
modulating fast neural activity at —f rates in the target area, that
is, the y-power in Al being modulated as a function of the phase
of low frequencies in AAC. Furthermore, we observed several
T-D GC peaks in the 6-f (4-30Hz) frequency range, and the
frequency of these peaks varied across individuals (and
hemispheres). Overall, we detected more GC peaks than
directional phase-amplitude coupling clusters, suggesting either
that not all the detected GC peaks translated into phase-power
modulations between source and target locations, for instance due
to the presence of phase-phase coupling®, or that the circular-to-
linear correlation method was not sensitive enough to detect
them all. Importantly, however, to each single phase-amplitude
coupling cluster corresponded a GC peak. This cross-validates the
results and ensures that y-modulations by the phase sampled
from another region truly reflects distant modulations.
Combining GC and phase-amplitude coupling constitutes an
exploratory alternative to dynamic causal model (DCM)*°. Chen
et al%® used DCM (o assess amplitude-amplitude cross-frequency
coupling between high- and low-visual areas during perception of
human faces. They also found qualitative evidence for functional
asymmetry coupling, where the effects of low frequencies on high
frequencies were greater in the backward direction relative to the
forward direction. However, although DCM allows for an
exploration of linear and nonlinear interactions within a single
model, our approach may be more flexible in discovering non-
hypothesized neurophysiological phenomena, such as those we
detected in the very low-frequency range (see ref. 41 for a
comparison of DCM and GC).

Our findings confirmed that T-D neural flow uses lower
frequency ranges than B-U, but also point to a more complex
picture than the previously hypothesized y-up f-down
scheme®!1$33-37, In left auditory regions, we detected GC B-U
peaks in the d-frequency range (1-3 Hz), indicating that very low
frequencies were also involved in B-U transfer (Table 1). Cross-
frequency coupling did not only confirm this effect but further
showed that the phase of d-activity sampled in left Al was
associated with a modulation of high y-power (80-100Hz) in left
AAC (Fig. 4). The fact that this effect dominated in the left
hemisphere (Supplementary Fig. 3) could reflect (i) that y-activity
in AAC was more pronounced in left than right AAC (Fig. 2),
(ii) that the low-frequency phase-locking of responses
(Supplementary Fig. 4) and stimulus/brain correlations (Fig. 2)
were stronger in left than right Al, (iii) or both. At any rate, the
left dominance in ¢/y-coupling presumably reflects some aspects
of the functional specialization of left auditory regions in speech
processing*2. Importantly, the spectral division of B-U and T-D
information transfer appears partly flexible, depending on
cognitive demands and/or on the interaction of stimulus
rhythms with local oscillatory properties.

The current results do not only show a spectral division but
also suggest a time division of labour between B-U and T-D
processes. The analysis of temporal modulations of GC TF
representations (Fig. 5) revealed the presence of significant slow
fluctuations (1-3 Hz) of GC in the y-frequency range, suggesting
that B-U and T-D information sequentially dominated over
periods of ~300-500ms. What could determine the regular
alternation of B-U- and T-D-dominant periods at this slow rate
remains unclear at this point. It could result from time constants
that are specific to speech. It has been shown that predictin;
forthcoming speech involves a syllable-based mechanism®’,
which is roughly compatible with 300 ms predictive segments.
Alternatively, slow modulations could be entirely driven by
endogenous J- or o-rhythms, whose phase (i) determines whether
a stimulus is going to be detected at the sensory level**~%® and (ii)
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Figure 5 | Temporal modulations of GC. (a) Difference between T-D and B-U Granger causal influence plotted as a function of time and frequency

(shown for S1). GC time-frequency representations do not show evidence of

continuous causal influences across distinct frequency bands, for example,

B-U y and T-D 6-f. Conversely we observe alternations in both time and frequency, suggestive of a discontinuous pattern of information transmission.
GC modulation spectrum in left (b) and right (¢} auditory cortex, resulting from Fourier-transforms of GC time-frequency data. Only significant (¢<0.01,
FDR corrected) modulations are reported. Black lines correspond to the diagonal (that is, modulation frequency = modulated frequency).

indexes the dynamics of sequential information processing at
higher stages’. In this respect, it would be interesting to obtain
similar data from the visual modality with less temporally
structured stimuli, and assess to what extent the timing of GC is
stimulus driven, or emerges from properties of the brain
organization.

The main advantage of spectral multiplexing is to prevent
interferences during multiple and continuous information
transfer using the same physical support. In the cortex, BU and
TD information travel via separate vectors'® but information
unmixing, by, for example, multiplexing, is required in relays
where ascending and descending information converge and are
integrated (that is, superficial layers). The modulation of neuronal
spiking (here approximated by local high y-activity?®) at distinct,
Jd-f versus 7, rates could be an efficient means to achieve it.
Alternatively, interferences could be avoided by using a single
information channel, with time windows during which B-U or
T-D dominates. Although the observed spectral division between
B-U and T-D information flows (Fig. 3) supports the former
scenario, temporal alternation of ascending and descending
information (GC modulations; Fig. 5) supports the latter
scenario. Although frequency and time division are not
conceptually incompatible, the use of both mechanisms for
directional information transfer appears computationally

NATURE COMMUNICATIONS | 5:4694 | DOI: 10.1038/ncomms5694 | www.nature.com/naturecommunications

redundant. The presence of effects in the 6 (1-3Hz) range for
both spectral (Figs 3 and 4) and time (Fig. 5) division is fairly
compatible with the predictive coding framework. This reflects
the fact that both B-U and T-D tend to fluctuate at -rate (Fig. 5),
while being predominantly oriented towards the B-U direction
(Fig. 3 and Supplementary Fig. 3). Such an asymmetry in
information flow is in line with the proposal that T-D message
passing results from the accumulation of B-U evidence, as this
process could translate in the co-occurrence of a continuous B-U
accumulation of prediction errors and a discontinuous T-D
prediction flow. More generally, the present results are consistent
with predictive coding models in the sense that T-D predictions
of auditory input rest on a nonlinear mapping from higher-level
representations, as shown by the nonlinear cross-regional phase-
amplitude coupling results (Fig. 4).

T-D effects were mainly associated with modulations of y-
activity at rates ranging from 5 to 30Hz. The f-rhythm could
have a local (cortical) origin that is compatible with a function in
T-D control. An interesting model of ff-generation from in vitro
slice preparations suggests that low fS-activity could result from
the local concatenation of two independent higher-frequency
rhythms (y) generated in superficial and deep layers, respec-
tively*®. In vitro experimental observations*® indicate that there
is an alternation between either the two independent higher-

7
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frequency rhythms or the f§ one, depending on the level of
excitation and on synaptic plasticity. We previously speculated
that this generation mode could constitute a possible mechanical
switch between a state where information flows freely upward
(y in deep and superficial layers) and a state where information
transfer is redirected, first confined within a cortical level and
then directed downward’. From an information-processing
perspective, the latter state could serve to match ascending and
descending information, and reduce the discrepancies between
incoming inputs and internal representations. Remarkably, the
biophysical mechanism of f-generation proposed by Roopun
et al®, involving the concatenation of slow and fast rhythms,
implies the temporal alternation of B-U dominant phases and
T-D dominant phases, consistent with what we observed here.

An alternative account for the frequency range where T-D
effects operate could be related to the «-rhythm physiology, as T-D
phase—amplitude coupling effects were largely distributed around
10Hz. o-Rhythm is the most conspicuous and widespread of the
brain rhythms owing presumably to its thalamo-cortical origin®,
and is an important effector of attentional processes’">2. Although
it could be involved in descending mechanisms, its general role in
attention and sensory gating is hardly compatible with one in
specific information and representations transfer. IHowever,
o-rhythm displays bistability with occasional splitting in high-6
and low-f components™ 5>, Tt is unclear how this splitting operates,
but if it was associated with a change from a widespread generation
mode to a more local one, it could also possibly underpin the effects
we observe here. Alternatively, low ff-oscillations could be generated
by the interaction between a feedforward and a feedback «-input, as
suggested by another model®®.

Thanks to unique depth intracortical human recordings
collected in (wo hierarchical regions of speech processing,
bilaterally in one subject and unilaterally in other two subjects,
we show a spectral division of the B-U and T-D processing flow.
Although our findings confirm a y-up scheme, they do not
support a i-down one. They show that a larger band involving 5—
p frequencies are involved in T-D information transfer, and
further suggest that local y-activity is modulated by the phase of
lower-frequency distant oscillatory activity. We additionally
showed that directional information transfer does not proceed
continuously, but alternates at a 1- to 3-Hz rate. These data
suggest that speech processing uses both distinct modulation
frequencies and temporal windows to transfer information in B-U
and T-D direction. The reason why B-U and T-D unmixing
appear implemented in a redundant manner, and the extent to
which the time constants we observed here are specific to speech
processing or could instead generalize, remain open questions.

Methods

Subjects. Three French female subjects participated in this study. They suffered
from drug-resistant partial epilepsy and were implanted for presurgical investiga-
tion with chronic depth electrodes in: right and left auditory cortex (S1, 45 years
old), left auditory cortex (S2, 30 years old) and right auditory cortex (83, 35 years
old). The electrodes of interest were located in Heschl’s gyrus (primary auditory
cortex, Al) and laterally in the superior temporal gyrus in a region we refer to as
AAC, as well as in other cortical structures that were not relevant for the study (see
functional validation of electrode position below). The subjects provided informed
consent to the protocol, which was approved of by the institutional review board of
the French Institute of Health. Neuropsychological assessment indicated that they
had intact lang functions. Brainstem-evoked potentials and pure tone audio-
grams carried out before iEEG indicated intact cochlear and brainstem auditory
functions. Analysis of iEEG indicated that the epileptic zones were located outside
the regions examined here.

phy ¥ dings. Stimuli and data acquisition. The subjects lis-
tened to 110 repetitions of two 2.5-s-long sentences in French, uttered by a French
female whose voice had a fundamental frequency of 201 Hz. Stimuli were presented
monaurally to both ears, in a pseudo-randomized order with an interstimulus
interval of 4,135s, and only the contra-lateral response was taken into account.

Elec
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The stimuli were recorded digitally
at a sampling frequency of 44.1 kHz and delivered to the subjects at 22 kHz with a
75-dB sound pressure level headset using E-prime software (Psychology Software
Tools Inc., Pittsburgh, PA, USA).

iEEG recordings were monopolar, with each contact of a given depth electrode
referenced to an extra-dural lead using acquisition software and a 128-channel
SynAmps EEG amplification system from NeuroScan Labs (Neurosoft Inc.).
During the acquisition, the EEG signal was high-pass filtered at 0.5 Hz and
amplified with an anti-aliasing filter at 200 Hz (temporal resolution of 1 ms and
amplitude resolution of 1 uV).

Anat fi ional definition of The stereotactic method

was based on the co-registration of the subjects’ magnetic resonance imaging
(MRI) with the stereotactic angiogram, to prevent injury to brain vessels. Multi-
lead electrodes (0.8 mm diameter, 10 or 15 contacts of 2mm length each with
1.5 mm spacing between contacts) were orthogonally introduced in the stereotactic
space. The anatomical position of each contact was then identified on the basis of
(i) an axial scanner image acquired before the removal of electrodes and (ii) an
MRI scan performed after the removal of electrodes (see Fig. 1b for electrode
position in SI). Auditory-evoked potentials measured in response to pure tones
were used to functionally delineate A1 and AAC, and select the right electrodes.
Auditory-evoked potentials were averaged over trials, after epoching (200-635 ms)
and taking the 150-50 ms pre-stimulus time period as baseline. All contacts that
elicited no significant responses were discarded. In a second step, Al was func-
tionally defined based on the presence of early P20/N30 components. These
responses were located in the medial and intermediate part of Heschl’s gyrus.
Third, for each functional area (A1 and AAC in left and/or right hemispheres), the
most responsive contact was selected for subsequent analyses.

Preprocessing. Data analysis was performed with EEGlab v.8 (sccn.ucsd.edu/
ceglab) for data extraction, Fieldtrip (http://www.runl/donders/fieldtrip) and Fast_tf
(http://cogimage.dsi.cnrs.fr/logiciels/), for TF decomposition. For GC, we modified
and adapted the scripts used in ref. 57. Data were epoched into segments, including a
baseline period (328 ms for 1, 1000 ms for S2 and S3) before stimulus onset and an
after stimulus period (452 ms for all subjects). Epochs including signals that deviated
from the average response of all the trials were discarded, by computing the
correlation between each single trial and the average response, and then rejecting the
15% of trials with the lowest Pearson’s correlation value. We set this conservative
rejection criterion and validated the approach on the basis of visual inspection of the
signals. The data set analysed was hence free of suspicious electrical activity related to
epilepsy, for example, interictal spikes.

‘We used a bipolar montage for data analyses, meaning that electrical activity
from all contacts was subtracted from a common reference signal that
corresponded to the average response of the least-responsive (mesial or lateral)
contact of each electrode. This resulted in attenuating global noise (50 Hz ambient
electric field) in a similar way for all contacts.

TF analyses and power spectrum. A TF continuous wavelet transform was
applied to each epoch using a family of complex Morlet wavelets (i = 7), resulting
in an estimate of power and phase at each time point and each frequency, with a
0.5-Hz resolution below 20 and 1 Hz above. The TF resolution of the wavelets was
frequency dependent (at 7 Hz: ¢ = 150 ms, 1 Hz; at 35 Hz: ¢ = 30 ms, 5Hz). We
restricted the analysis to frequencies between 1 and 150 Hz, spanning the whole
range of relevant brain rhythms (up to high y-activity). Figure 2 shows the typical
cortical responses (increase or decrease in signal power relative to baseline in
decimal logarithmic units (dB) at each time and frequency data point) for all
subjects and brain areas.

Speech/brain cross-correlations. Sentences characterization. For each sentence,
we estimated the wideband envelope of the speech waveform®®2%. The raw speech
waveform was band-pass filtered into 32 frequency bands, encompassing
80-8,500 Hz with a logarithmical spacing, modelling the cochlear frequency
decomposition. The absolute value of the Hilbert transform of each band-passed
signal constitutes an estimate of the envelope for that frequency band, and their
sum an estimate of the wideband envelope. Finally, we computed the power in each
frequency band at each time point, with a millisecond resolution, similar to the
iEEG data, that is, between 1 and 150 Hz, with a 0.5 Hz resolution below 20 Hz and
1Hz above, by applying a TF wavelet transform, using a family of complex Morlet
wavelets (m =7).

Speech/brain cross-correlation computation. We cross-correlated over time for
each trial, sentence and region the oscillatory power estimates of the neural data at
each frequency (1-150 Hz) with the corresponding frequency of the acoustic signal,
between — 50 and 200 ms, relatively to the acoustic input (with brain response
following acoustic signal for positive cross-correlation values). This procedure
results in an estimate of stimulus/response correlation at each frequency and for
multiple time delays. At each time delay, correlation equals 1 if the two signals are
perfectly identical when taking into account this time delay, and 0 if the two signals
are totally unrelated. Data were subsequently averaged over trials and sentences.
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GC analysis. GC is classically used to assess causal influence among two time
series??. The basic assumption is that a time series X(#) linearly causes another time
series Y(#) if the future trend of the latter is better predicted by looking at the past
of X and Y than by looking at the past of Y alone. For stationary processes, the
computation of GC relied on multivariate autoregressive models to estimate the
prediction error in the two conditions??. For non-stationary time series, such as
oscillating neural signals, GC spectra can be obtained in a non-parametric manner
by computing Geweke’s frequency domain version of GC without going through
the multivariate autoregressive model fitting®®3°. We therefore used a spectral
density matrix factorization technique on complex cross-spectra, obtained from the
continuous wavelet transform of recorded iEEG time series*®. Both parametric and
non-parametric GC have been previously used in neuroscience to assess linear
directional influence between two communicating brain areas in local field
potential®’, EEG%” and functional MRI data®!.

GC was computed on a trial-by-trial basis for each subject using the method
proposed by Dhamala et al.%%, and then averaged across time, trials and sentences
(Fig. 3 and Supplementary Fig. 1). Statistics were then computed by generating
1,000 permutations of iEEG data, in which left and right electrodes, as well as trials,
were randomized. This procedure permits to rule out that the observed effects arose
from noise or specific methodology, as the exact same data and algorithms were
used to compute the permuted trials. For each realization, we computed the mean
GC across trials and the corresponding s.d. The original GC spectra were then
standardized to obtain a vector of Z-values, one for each frequency.

T-D and B-U influences can be measured simultaneously'®%2 The information
flow was considered T-D when GC from AAC to Al exceeded GC from Al to
AAC, and B-U in the other case.

We tested for significant frequency peaks separately for each T-D and B-U GC
direction (Supplementary Fig. 1 and Table 1) together with frequency ranges where
T-D and B-U GC spectra were significantly different (Fig. 3a,b). For the first
analysis, we directly compared the Z-transformed vectors obtained from GC
spectra to a zero-mean normal distribution, and corrected for multiple
comparisons with the FDR method at a one-tailed g-value of < 0.05. For the
second analysis, we first computed the difference in Z-values between T-D and B-U
Granger spectra at each frequency point, and then compared it with the zero-mean
normal distribution thresholding at a two-tailed g-value of g <0.05 (or g<0.01, see
Fig. 3), FDR corrected.

To further explore effects of flow direction, we applied a one-way analysis of
variance test on time-averaged GC spectra for all data sets at each frequency point
(Fig. 3c). Red (blue) areas correspond to frequencies where the T-D (B-U) mean is
significantly higher than the B-U (T-D) mean. Values were thresholded at P<0.05
(Bonferroni corrected for multiple comparisons). We also performed a two-way
analysis of variance to investigate together the effects of hemisphere (left/right) and
flow direction (T-D/B-U). The four data sets were tested pairwise (contrasting SI
left and right hemispheres, and S2 with §3) and the values were thresholded at
P<0.05 (Bonferroni corrected for multiple comparisons). A significant interaction
was detected at low frequencies (1-6 Hz).

To assess the temporal alternation of directional GC peaks, we first subtracted
T-D and B-U TF matrices at each trial (see example in Fig. 5a). We then Fourier
transformed this data at each frequency band (1 Hz resolution) and averaged across
trials and sentences to obtain the modulation spectrum for each data set. For
statistical testing, we computed 1,000 permutations of GC data by shuffling trials
and electrodes, z-scored the data using the mean and variance obtained from
permutations and used FDR correction for multiple comparisons (Fig. 5b,c).

Cross-regit ha: i Cross-freq y coupling depen-
dencies were studied under the phase-amplitude coupling framework. The ratio-
nale for using phase-amplitude coupling is that cross-frequency interaction could
provide dynamic gating of information. Cross-regional phase-amplitude coupling
would in turn reveal direct nonlinear interactions between distant sites®*. We used
phase and squared power values (amplitude) to approximate circular and Gaussian
distribution, respectively. We subsequently computed the circular-to-linear
correlation®, between each 1-20 Hz phase and 20-150 Hz amplitude frequencies.
Correlations were computed across trials, sentences and time dimensions
altogether, resulting in an estimate of the amount r of correlation between two
frequencies, under a phase-amplitude dependency. To compute inter-regional
dominance, we contrasted T-D and B-U phase-amplitude coupling analyses, while
controlling for their dominance over local effects. We controlled for local phase
((T-D—local AAC)—(B-U—local Al)) to ensure that the amplitude modulations
detected in one region are significantly more strongly related to the low-frequency
phase sampled in the distant region than to local low-frequency phase.

Significant phase-amplitude coupling was based on corrected P-values using
non-parametric permutation tests to generate null distributions of the maximum
cluster size®!. This implicitly adjusts for searching over multiple frequencies. The null
distribution was obtained by computing 1,000 times the circular-to-linear correlation
from a random mix of data taken equitably from the four types of phase/power
relations we investigated (T-D, B-U, local A1 and local AAC). Clusters were defined
as contiguous r-values above 0.045. Clusters of the 99th percentile (corresponding to
P<0.01) were considered significant and are reported throughout the manuscript.

To further explore effects of flow direction and hemisphere (Supplementary
Fig. 3), we contrasted the left and right phase-amplitude coupling patterns

observed in Fig. 4 (T-D minus B-U corrected for local phase). To highlight only
left-dominant results, we applied to the left-right contrast a mask corresponding to
the left hemispheric phase-amplitude coupling patterns. Statistics were computed
similarly than before, except that we took a random mix of data taken equitably
from the eight types of phase/power relations we investigated (left/right, T-D/B-U,
local A1/AAC). In this approach, clusters were defined as contiguous 7-values
above 0.07 and clusters of the 99th percentile (corresponding to P<0.01) were
considered significant.

Phase-locking value. For each region of interest, we evaluated the evoked mod-
ulation spectrum. We computed the phase-locking value®? across trials for each
time point and 1-150 Hz frequency. To obtain the modulation spectrum, we
averaged the resulting phase-locking values over time and sentences.
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