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FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Specialistica in Fisica

APPRENDIMENTO DI MEMORIE

CORRELATE CON SINAPSI BINARIE

Tesi di Laurea Specialistica

Relatore: Candidato:

Prof. Enzo Marinari Lorenzo Fontolan

Relatore esterno:

Prof. Stefano Fusi

Anno Accademico 2010/2011



In all truth I tell you,
unless a wheat grain falls into the earth and dies,
it remains only a single grain;
but if it dies it yields a rich harvest.

John, 12:24
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Chapter 1

Introduction

1.1 Motivation of studies

In recent years, neuroscience has drawn the attention of scientists coming from many

different backgrounds. Disciplines like medicine, psychology, biology, mathematics,

philosophy, chemistry, bioengineering, cybernetics, and also physics, are now ac-

tively involved in what I personally perceive as the most interesting among the

mysteries of human nature: the exploration of the human brain. Our perception

of the world is mediated through the brain, at all levels: from tickling feet to the

understanding of quantum electrodynamics, from the perception of beauty to the

fits of anger, every external input must be processed by our brain. Since the age

of the first scientific approaches, the number of questions and the complexity of the

answers have been rapidly increasing, leading to an enormous corpus of data and

evidences which, still, mostly lack an even basic understanding. This is, of course,

due to several factors: first, the enormous, astonishing sophistication of the ner-
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vous system; second, the fact that unharming experimental techniques for studying

the brain have been developed only during the last seventy years; third, the insuf-

ficient use of mathematical and physical methods in favour of more psychological

and heuristic attitudes. In recent years, however, amazing advancements have been

made, boosted by the development of instruments capable of measuring the activity

of single neurons, the “invasion” of a rising number of mathematicians, statistician

and phycists into biological fields, and the availability of fast and powerful comput-

ers to test and simulate brain data.

With this dissertation we aim to contribute to the current theoretical effort in un-

derstanding the principles of learning and memory. In fact, neither the biological

underpinnings, nor the physical dynamics of these processes have been fully un-

derstood yet. Theoretical models represent both a powerful source of ideas and a

reliable ground for quantitative and predictive analysis (Abbott, 2008).

Our approach relies essentially on concepts and techniques borrowed from statistical

physics and dynamical systems theory, along the research lines inaugurated by the

first pioneers who brought physics into neuroscience. Since we are interested in the

basic principles rather than subtle biological details, we will use suitably simplified

models. However we will not make use of assumptions that are absurd from a bio-

logical point of view. In this way we hope to reveal the essential properties of the

system, without blurring the analysis with irrelevant (to our level of description)

biological details.

The fundamental motive of this thesis can be sketched as follows: building a plausi-

ble and robust model for the learning and storage of memories in a neural network

with the aid of mathematical and physical tools, so that, ultimately (and not yet in

this thesis), one could foresee the consequences of these formulations, and possibly

formulate predictions which could be later verified or rejected by experiments.
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1.2 Thesis overview

In this section we outline the main concepts presented in each chapter, hoping to

offer the reader a concise overview of this dissertation.

Anatomical and biological structure of the brain

In Chapter 2 we will go over a wide-ranging but essential survey of the main biolog-

ical features of the primate brain. At the macroscopic level, we can, at least, sketch

the role of almost every single structure, but we are far from a deep understanding

of specific functions and the way they are accomplished.

On the other side, at the microscopic scale (∼ µm), the brain is made up of a

massive number of cells, the neurons, and an even larger number of connections,

the synapses. Although there are many kinds of nervous cells, and several different

synaptic mechanisms (triggered by disparate biochemical processes), our attention

is more focused on the main universal properties of the brain basic components:

the generation of an action potential in the neuron’s soma, and the plasticity of the

synaptic connections. Experimental evidences show that the ability to learn and

retain an external stimulus primarily relies on those two properties, as we will point

out. This raises the fundamental question of this thesis and, perhaps, of theoretical

neuroscience: how does our nervous system manage and modulate the activity of bil-

lions of neurons to gather, elaborate and execute the variety of complex behaviours

that we see in daily experience?

Neural Networks

Scientists have tried to answer this question for the last fifty years. Starting from

very simplified and abstract models of binary computational units, McCulloch and

Pitts (1943) have shown that such systems are capable of computing, i.e. perform-
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ing any arbitrary sequence of logical operations. Moreover, the extensive studies of

Rosenblatt (1962) prove that a simple network of these units (the perceptron) can

learn, under some assumptions, to classify external inputs into different categories

by dynamically adjusting the strength of the connections.

The studies on the perceptron laid the groundwork for the work of Little (1974),

Amari (1977), Hopfield (1982), and Amit (1989), who developed the modern con-

cept of Attractor Neural Networks (ANN), which, as we shall see in Chapter 3, is

particularly important for memory and learning. An ANN is a recurrent network

of interacting elementary units, whose time dynamics converge to a stable pattern

of activity. The fixed points of the dynamics (the attractors) are representations of

the memorized patterns: whenever we feed the network with a stimulus (that can

be seen as the initial conditions of the dynamics), it will soon settle into the closest

attractor and remain there until a new stimulus is presented. It is straightforward

to notice how promising these network are for modelling associative memory, i.e. a

memory that can be retrieved just by specifying a piece of its content1.

Once established the adequate mathematical formalism, researchers embarked in a

tour de force to determine the scaling properties of associative ANN with the tools

of statistical mechanics. Amit et al. (1985) found that the maximum number of

uncorrelated memories that can be stored in a ANN grows linearly with the size

of the network. When tested under more realistic biological constraints, however,

this fairly general result proved to be a very optimistic estimate of the real capacity.

Only successively, thanks to the work of Amit and Fusi (1994), the introductions of

a stochastic component in the learning process allowed to restore the previous esti-

mation. In addition, it has been noticed by Tsodyks and Feigelman (1988) that the

1An example of associative memory is a system that would recall the word “shakespeare” when
feeded with the phrase “to be or not to be, that is the question”. The system should be robust
to small errors: for example, we would like the network to retrieve the word “shakespeare” even
when presented with the corrupted stimulus “to beat or not to beat, that is the question”.
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capacity might be enhanced if memories are sparsely coded, which means activating

only a small number of neurons per pattern.

In the last section of Chapter 3 we illustrate a possible framework for generating

a hierarchy of correlated patterns: ultrametric trees. Correlated stimuli are, in

fact, much more interesting than uncorrelated ones, since they constitute a richer

environment more similar to what we do actually perceive from the world around

us.

Learning of correlated memories

The question of how to build a network capable of storing an ultrametric hierarchy

of memories is the main topic of Chapter 4. In the first part of the chapter, in order

to get acquainted with the model, we present an extended discussion of the case of

uncorrelated sparse memories.

We consider a recurrent network of binary neurons whose synapses have only two

stable states, whose input is a sequence of memories presented one at a time. Each

memory elicits a peculiar pattern of neural activity, which in turn modifies a small

group of synapses in a stochastic fashion. The network stores a certain amount of

information from the currently presented stimulus by dynamically updating a cer-

tain number of synaptic strength through a stochastic Hebbian rule. Hence, the

learning process can be visualized as a random walk between the stable synaptic

states. Changes induced in the synaptic matrix represent the memory trace of the

stimulus: as long as some of the synapses preserve their value, the original pattern

of activity produced by the stimulus may be recalled.

In this way, older patterns are progressively erased from the network, since new

patterns cause further synaptic modifications that may overwrite previous changes.

In the limit of slow learning, in which the probability that a pattern leaves a trace
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in the synaptic matrix is kept low, memories stay in the network for a long time

without being lost. We provide an analytic result for the memory lifetime (which

is perfectly equivalent to calculating the maximum storing capacity of the network)

by performing a signal to noise analysis. In fact, we define the memory lifetime as

the time after which the original trace left by the tracked memory becomes indis-

tinguishable from the random fluctuations of the system. The maximum lifetime is

seen to be inversely proportional to the sparseness of patterns.

In the second part of Chapter 4 we propose a model of a network whose input is a

set of memories organized in classes. Each class can be seen as an ultrametric tree

whose leaves represent a group of correlated stimuli, while at the branching node

lies a prototype pattern that collects the average features of all descending leaves.

The stimuli are random selected among the members of each class, and never among

the prototypes. If the learning process is slow and the intra-class correlation is high,

the network learns the prototype pattern more effectively than any of the original

stimuli.

We exploit this feature by constructing a further network capable of storing only the

differences between the prototype and the stimulus representations. The higher is

intra-class correlation, the sparser is the representaton of the difference. The num-

ber of patterns that can be learned sensibly increases by a factor proportional to

correlation.

We first studied an ultrametric hierarchy with two levels, and then with three levels.

In the latter case we show that the network may also learn any of the subclasses par-

ents from the intermediate level if the network parameters are appropriately tuned.

The analysis has been carried out using the mean field approximation, and the

results have been afterwards tested with extensive computer simulations.
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Conclusions and future directions

In the last chapter we briefly summarize and discuss the work done in this disserta-

tion and its possible consequences, suggesting some interesting advancements that

could follow the present work in the near future.



Chapter 2

Biology of the Nervous System

The first scientific enquiries into the brain function trace back to the Neolithic

period, attested by remains of tools used during brain operations. By the 3rd

millennium B.C., the Egyptians were even able to reach a remarkable rate of success

in brain surgery, as it is reported, for example, in the Edwin Smith Papyrus1. In

this manuscript of inestimable value, the author recounts several cases of patients

suffering from head wounds, who underwent neurosurgical treatments and could

sometimes improve their previous condition. Every age had its surgeons: Celsus

in ancient Rome, Galenus in Greece, many clerics and churchmen (even the Pope’s

personal confessors) in the Christian Middle Ages. Several philosophers from the

past, from Aristotle to Cartesius, attempted, as well, to define the role of brain,

in the effort to trace what makes Man exceptional in the realm of nature. Despite

a constant curiosity for its mysteries, the history of scientific investigation of the

human mind has been slow and complicated. Only during the second half of the

1http://www.touregypt.net/edwinsmithsurgical.htm

9



2.1 Basic functional anatomy 10

19th century, the work of Camillo Golgi and Santiago Ramon y Cajal inaugurated

a new scientific approach to the study of the brain, granting them the Nobel prize

and giving birth to modern neuroscience.

2.1 Basic functional anatomy

In this section we will shortly sketch the anatomical structure of the human brain

(see Fig. 2.1). The bigger part of the brain, located immediatly below the skull,

is represented by the two (left and right) cerebral hemispheres, consisting in a four

millimeters thick, highly convoluted stratum of gray matter2 called cortex, and an

underlying core of white matter linking the cortex to the spinal cord. The cortex

Figure 2.1: Cross section of the human brain. Regions of major interest are shown.

2Gray matter comprehends nerve cell bodies, dendrites, myelinated and unmyelinated axons
and blood capillaries. White matter, on the contrary, mainly constitutes of myelinated axons,
determining the white color.
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directs the brain’s higher cognitive and emotional functions. It takes part in a myriad

of processes: primary sensory areas elaborate sensory information, motor areas select

volontary movements of the body and produce the signal in order to execute them,

associative areas are involved in building the perceptual representations of reality,

such as three-dimensional space, but also in abstract thinking and in conscious

experience. A hard packet of nerve fibers connects the two hemispheres: the corpus

callosum.

Beneath the cortex resides the limbic system, consisting of the amigdala, which plays

a role in motivated behaviours (like sexual desires) and some emotional states (fear,

aggressiveness), the hippocampus, that mediates learning and memory processes,

and the hypothalamus, an ensemble of nuclei devoted to the monitoring of body

temperature, blood pressure, reproductive behaviour, hunger and thirst.

Basic life processes, including breathing, heart pulse, arousal, balance and sleep,

are controlled by a group of structures placed below the lymbic system. This core

compound is evolutionary old, since it can be found in all vertebrates, and includes

some important brain architectures such as the thalamus and the cerebellum, that

are, respectively, the first filter of sensory information and the coordinator of body

movements, posture and equilibrium. Going further down one finds the medulla, a

center for many autonomic functions but also the relay of nerve signals between the

brain and spinal cord. Traveling inside a tubular bundle of nerve channels, neural

signals are eventually transmitted to muscles and organs all over the body.

2.2 Neurons and synapses

To develop its computational paradigm, that we are still far from understanding, the

brain makes use of a huge number of slow, unreliable3 and densely interconnected

3Neuron’s behaviour is nonlinear, showing significant probability of error per unit.
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units: the neurons. The human brain contains between 1010 and 1011 nerve cells,

which are mutually linked through chemical junctions called synapses. In the cortex,

each neuron receives around 10000 synaptic inputs, for a total of ∼1013 synapses

and a density of 108 synapses per cubic millimeters. Since they are the building

blocks of the brain, we are about to give a brief account of the characteristics of

neurons and synapses.

2.2.1 The neuron

The basic computing unit in the brain is the single nerve cell, the neuron. Neurons

communicate through electrical impulses produced inside the cell body and then

transmitted to other structures, such as muscle fibers or, in the majority of cases,

other neurons. The neuron has a complex structure, which is illustrated in Fig.

2.2. The soma, which embodies the nucleus, is the place where the most important

biochemical reactions take place and, therefore, where the communicating signal

of the neuron, a fast and strong electrical impulse (the action potential), is first

produced. The action potential is generated in correspondence with a shift in the

electrochemical potential of the cell, caused by a depolarization (that would provoke

an excitatory current spike) or a hyperpolarization (which induces an inhibitory ef-

fect: the cell is less likely to produce an action potential) of the cell membrane,

the protective layer coating the cell. For reasons that we will explain later, the

impulse is largely independent of the size and shape of the depolarization. Hence,

it travels always with (about ) the same amplitude and speed through the main

output channel, the axon, a long cable surrounded by a myelin sheath to facilitate

the propagation of the signal. The axon may split into several branches, each one

containing several terminals connected to other neurons. At the end of his travel in

the axon, the current spike reaches a pre-synaptic terminal, a small structure con-



2.2 Neurons and synapses 13

taining various chemicals that are released upon the spike arrival, and transmit the

impulse to the post-synaptic terminals of target neurons. These chemicals, called

neurotransmitters, move across a small gap (about 20nm wide) that separates the

pre- and the post-synaptic terminals, where they are captured by receptor molecules

of the target cell, eventually delivering the signal. Post-synaptic terminals are dis-

seminated in the dendrites, which form a tree-like structure, connected to the soma,

where the signal ends its travel. The initial fast and all-or-none spike, generated

inside the soma, is modified in amplitude, frequency and phase during both synaptic

Figure 2.2: Simplified anatomical structure of a single nerve cell.
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Figure 2.3: Some different single neurons, lengths given are approximate and correspond
to direction of maximal extent. Adapted from Mel (1994). A. Alpha motorneuron in
spinal cord of cat (2.6 mm) B. Spiking interneuron in mesothoracic ganglion of locust
(540 C. Layer 5 neocortical pyramidal cell in rat (1030 µm) D. Retinal ganglion cell in
postnatal cat (390 µ m) E. Amacrine cell in retina of larval tiger salamander (160 µ m) F.
Cerebellar Purkinje cell in human G. Relay neuron in rat ventrobasal thalamus (350 µm)
H. Granule cell from olfactory bulb of mouse (260 µm) I. Spiny projection neuron in rat
striatum (370 µm) J. Nerve cell in the Nucleus of Burdach in human fetus K. Purkinje cell
in mormyrid fish (420 µm) L. Golgi epithelial (glial) cell in cerebellum of normal–reeler
mutant mouse chimera (150 µm) M. Axonal arborization of isthmotectal neurons in turtle
(460 µm).

release and reception, according to the different characteristics of the many chemi-

cals involved in the process.

Although they share many of the features we have just mentioned, there exist many

kind of different neurons varying in shape, size and electrochemical properties, char-

acteristics that determine their highly specialized functions in the nervous system

(see Fig 2.3).
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2.2.2 Spike generation mechanism

When the neuron is at rest, the cell membrane mantains a difference between the

electric potential of the soma and of the outside of the cell. The cell body is nega-

tively charged with respect to the external matter, whose potential is by convention

set to zero; the value of this resting potential is about −65mV (Squire and Kan-

del, 2009). The electrical conductivity of the membrane (a thin lipid bilayer) is, on

average, remarkably small (∼1µF ), but the presence of ion channels can increase

local conductivity, so that charged ions and molecules may enter or exit the cell.

In particular, biologically important ions, such as sodium (Na+ ), potassium (K+

), calcium (Ca++ ) and chloride (Cl−), can cross the membrane through specialized

channels (or gates) provided by proteins embedded into the phospholipidic layer.

When the electrochemical equilibrium is violated, the membrane potential can either

be as low as −90mV , which is called hyperpolarization, or increase to −50mV , that

is called depolarization. These two mechanisms are activated in the post-synaptic

neuron by the activity of the pre-synaptic cells. When a presynaptic neuron is ex-

cited, it releases a certain combination of neurotransmitters into the synaptic gap.

The postsynaptic neuron has different kinds of receptors, that match with distinct

neurotransmitters: depending on the combination of presynaptic transmitters and

postsynaptic receptors, the resting potential of the postsynaptic membrane will be

lowered or raised. As the potential becomes more negative, we say the synapse has

an inhibitory effect, because it makes the generation of an action potential less likely.

On the contrary, when the electric potential becomes less negative, the synapse is

called excitatory, since it helps the postsynaptic cell reaching the threshold for the

origination of the action potential. In the cortex , about 85% of synapses are ex-

citatory, the majority of which connects pyramidal neurons, while only 15% are

believed to be inhibitory. The majority of the neurotransmitters are either always
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excitatory or always inhibitory, but there are some that can be both excitatory and

inhibitory, depending on the receptors. The induced excitatory or inhibitory sig-

nal, regardless of its amplitude, is propagated through the dendrites and eventually

reaches the cell body of the postsynaptic neuron, progressively vanishing over time.

However, when a neuron is excited by more than one synapse in a short period of

time, or when one synapse is repeatedly activated, the neuron’s threshold potential

(typically around −50mV ) may be reached, and an action potential may then be

generated. When the potential goes above threshold, all voltage activated sodium

channels are opened simultaneously, and positively charged sodium ions rapidly flow

into the neuron. Therefore, the potential of the neuron rises rapidly to a peak of

about 25mV . Then the sodium gates shut down completely for a few milliseconds,

while the potassium gates gradually start opening, letting the K+ move outbound.

Figure 2.4: Sequence of biochemical processes involved in the generation of an action
potential (Pinel, 2009).
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After the potassium gates have been closed, the neuron’s potential overshoots the

resting potential, causing a hyperpolarization. During this interval, that is called

absolute refractory period and lasts ∼1ms, the cell is almost completely inhibited

from producing further action potentials, and it reaches back the resting potential

in a few milliseconds. The precise sequence of ion channels activation, which leads

to the generation of an action potential, is reported in Fig. 2.4. The intensity of the

produced electric signal is independent from the magnitude of the depolarization; it

is a large, fast traveling spike that propagates along the axon always with the same

amplitude. The signal does not suffer from any substantial attenuation, since the

myelin sheath acts as a regenerator, helping the spike in mantaining its speed and

amplitude.

2.2.3 Synaptic Plasticity

The second fundamental constituent that we wish to examine is the synapse. With

the term ”synapse” we will refer only to the chemical process described in the pre-

vious section, and not to the so called electrical synapses, which are much less com-

monly found in the vertebrate brain and possess different characteristics. Synapses

mediate the transmission of the action potential from the pre-synaptic axon to the

post-synaptic dendrites. Electrophysiological experiments have shown that the am-

plitude of the synaptic response varies over time, depending on the activity of the two

connected neurons. This ability to change in strength is called synaptic plasticity.

Theorists and experimentalists are convinced, on the basis of increasing evidences

(Bliss and Collingridge, 1993; Bredt and Nicoll, 2003), that synaptic plasticity plays

a key role in memory storage, learning and in the development of neuronal connec-

tivity.

After a transition, the synapse may quickly return to its previous value (short-term
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enhancement), or persist in its new state for a few minutes, as well as for several

months. In this case it is called Long Term Potentiation (LTP), whenever an in-

crease in the synaptic efficacy has occurred, or Long Term Depression(LTD) when

the synaptic efficacy has decreased. Indeed, this is an example of adaptation in the

nervous system, a property that, since the end of the 19th century, has been thought

to be related to memory and learning processes (Ramon y Cajal, 1909; Tanzi, 1893).

In theoretical applications, such as the neural network models outlined in Chapter

2, synaptic plasticy rules have been widely used long before experiments proved

their validity, inspired principally by the so called Hebb rule (Hebb, 1949). Putting

together behavioural evidences and neurophysiological data, canadian psychologist

Donald Hebb formulated the following principle:

Let us assume that the persistence or repetition of a reverberatory activity (or

”trace”) tends to induce lasting cellular changes that add to its stability[...].

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased.

The postulate suggests that activities of cells A and B during past times may trigger

a synaptic modification that, in turn, will affect the future behaviour of the neurons.

More generally, Hebb rule is interpreted as stating that synaptic efficacy variations

are driven by temporal correlations in the activities of the pre-synaptic and post-

synaptic cells.

The first experimental clues on Long Term Potentiation were identified by Bliss and

Lomo (1973) in the dentate gyrus of anaesthetized rabbit, and, in following years,

many further evidences of synaptic plasticity have been noticed in various other

areas of the mammalian brain, such as the hippocampus, the neocortex and the

cerebellum. The most studied region, however, is the hippocampus, specifically the
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synapses linking CA3 to CA14 pyramidal cells. Low-frequency stimulation of the

pre-synaptic afferent does not result in any modification of the synaptic efficacy,

while high frequency stimulation provokes LTP when both cells are firing. Since it

requires both neurons to be active, this kind of LTP obeys the Hebb rule, which, in

its original formulation, asserts that pre- and post-synaptic cells need to be active

together in order to provoke the synaptic shift. In a real biological network, however,

neurons are almost never temporally synchronized, and thus pre- and post-synaptic

neurons may fire at different times. Indeed, what has emerged from experiments is

that spike timing between neurons is extremely important to determine the effec-

tiveness and the sign of the synaptic modifications (Bell et al., 1997; Bi and Poo,

1998; Markram et al., 1997). This property is commonly referred to as spike timing

dependent plasticity (STDP).

The usual experimental protocol consists in measuring the magnitude of the change

in synaptic weight, depending on the time delay elapsing between the evoked pre

and post-synaptic action potentials. In Fig. 2.5 we have reported an example of

experimental data from Bi and Poo (1998), on the left, and an exemplified represen-

tation of the STDP curves, on the right, drawn from various type of synapses found

in different parts of the brain. While some synapses obey the Hebb rule, as can

be noticed by looking at 2.5(a) and 2.5(b) left-top, one can also find anti-Hebbian

plasticity (left-bottom) and even non-Hebbian rules (right-top and right-bottom).

After a number of early successes, however, researchers have struggled to obtain

reliable and definitive findings about LTP. Moreover, given the many controversial

outcomes collected from experiments, the biochemical processes underlying LTP are

still greatly debated, and none of the many possible mechanisms that have been

proposed is able to provide a full explanation of the phenomenon. Accordingly,

4Cornu Ammonis. The name comes from the anatomical resemblance between the hippocam-
pus and the ram’s horn, symbol of Jupiter.
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(a) (b)

Figure 2.5: (a) Measurements of induced change in the Excitatory Post-Synaptic Po-
tential as a function of time delay ∆t between pre- and post-synaptic spikes. In vitro
data from hippocampus (Bi and Poo, 1998). (b) Synaptic plasticity curves for different
synapse types (from Shouval et al., 2010). The red portion indicates a positive change
in the synaptic weight (LTP), while green portion is associated to a negative shift (LTD).
Each kind of synapse can be associated with a specific learning rule (see the review of
Abbott and Nelson, 2000).

although STDP has become a cornerstone for both experimentalists and theorists,

the straightforward, linear approach based on temporal synchronization has shown

its cracks, and the time has probably arrived to embody other features in the actual

theoretical framework. Indeed, STDP role as a dominant mechanism for synaptic

plasticity has been recently questioned by Shouval et al. (2010), who propose a

broader theory based on cellular mechanisms, where STDP would be only one of

the key parameters involved. In this thesis, however, we will take the Hebb rule as

the paradigm of reference for synaptic plasticity, as we shall see in Section 3.2.1.

2.2.4 Binary synapses

So far, plasticity has been treated as a dynamical process that provokes a sudden

shift in the value of the synaptic weights, depending on the activity of pre- and



2.2 Neurons and synapses 21

post-synaptic neurons. Such a formulation leads, unavoidably, to an intrinsic in-

stability. In fact, whenever two linked cells obeying the Hebb rule fire persistently

closely in time, the synaptic coupling between them is strengthened. This higher

synaptic efficacy facilitates, again, the activity of the two neurons, causing a further

reinforcement of synaptic weight, and so on.

However, in a biological network, one would expect synapses to be bounded at some

value, in order to avoid the infinite growth of activity that produces an unstable

behaviour. This view is supported by in vitro experiments made in hippocampal

CA3-CA1 regions by O’Connor et al. (2005) and Petersen et al. (1998). Results from

collective data of synaptic populations had shown graded response to cell stimula-

tion, endorsing the hypothesis that efficacies range over a broad spectrum of analog

values. Instead, the aforementioned studies investigated the behaviour of single

synapses, under stimulation of both pre- post-synaptic neurons. Their analysis

shows that modifications of synaptic weight occurs swiftly (<1 min) and in an all-

or-none fashion, with different thresholds for individual synapses. After a successful

transition, the synapse saturates to one of the two stable states and gets stuck there

for several minutes, even in presence of further stimulation.

According to these observations, stimuli are thus encoded in the network in

a digital way, by setting the value of synaptic efficacies to one of the two stable

states. Yet, two more problems are associated with this view: first, all synapses may

saturate to one value causing the loss of stimulus selectivity, and second, if each new

stimulus provoked a shift in all synaptic weights, older memories would be quickly

erased and forgotten. Collective saturation can be fixed assuming competitiveness,

that is, in correspondence of a stimulus, there would always be a certain number of

synapses getting depressed while all others are getting potentiated and vice versa.

At the same time, the problem of memory stability has been tackled by Amit and
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Fusi (1994), who introduced the mechanism of stochastic learning (see Section 3.3.1)

to reduce the average number of synaptic transition per stimulus. This way, stored

information relating to old memories is preserved for a longer time. Furthermore, an

appealing biological device, that could possibly account for stochastic transitions,

is the fact that plasticity events are triggered with dissimilar thresholds in different

synapses (O’Connor et al., 2005; Petersen et al., 1998).

Despite all these successes, however, experimental evidences for bistability are still

scarce, further studies are hence needed to uncover the many unknown aspects of

synaptic plasticity and put the work of theoreticians on the right path.



Chapter 3

Artificial Neural Networks

3.1 Early models

The previous chapter contains a brief overview of the biological bricks that lead

to the computation and the storage of information in the brain. Quite obviously,

the brain is immensely more complex than the description we have given. Apart

from the extremely variegated and highly specialized functions expressed by differ-

ent nerve cells, the brain is disseminated of many different substructures performing

very different tasks, from receiving external sensory inputs to generating emotions

and feelings. Almost inevitably, the first mathematical models of neural networks

not only operate several drastic simplifications, but they also rely on very strong

hypotheses that have not been necessariliy verified in experiments. In fact, one has

to be aware that these pioneeristic models are overmuch elementary when consid-

ered from a neurophysiological point of view, and should not treat them as realistic,

biologically exact descriptions. Nevertheless, they are a precious resource for un-

23
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derstanding the basic strategies and principles of neural computation, both from a

physiological and a bioengineering point of view.

In this thesis we are interested in the network properties, i.e. in the collective be-

haviour of a huge number of units (neurons) interacting with each other. For this

reason, we make the (rather strong) hypothesis that we do not need the level of

elaboration provided by detailed single neuron models, such as the Hodgkin-Huxley

neuron. Instead, we will start from the simplest of the neurobiologically inspired

computational units available in literature: the formal neuron of McCulloch and

Pitts.

3.1.1 McCulloch-Pitts neuron

McCulloch and Pitts (1943) summarized the most salient characteristic of a biolog-

ical neuron, already stated in Section 2.2.1, in a model that regards the neuron as

a binary computing unit, in the context of Boolean logic. Of course, they had to

make a number of radical preliminary simplifications:

• all neurons are identical

• subthreshold inputs do not trigger the release of any neurotransmitter, and

suprathreshold inputs always leads to the generation of a single, identical spike

• the output of the unit depends only on the distribution of the upcoming inputs

and on the set of synaptic efficacies

All these hypotheses are far from being fully justifiable from a neurophysiological

perspective, but can represent a good approximation if we are interested primarily in

the collective computational properties of the brain. In the McCulloch-Pitt’s picture,

the neuron is merely a discrete unit that elaborates a set of incoming inputs, which
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in turn are generated from other binary elements, and returns a binary variable as

the output.

The ideal scheme is displayed in Fig. 3.1. Binary inputs x1, ..., xn, coming

from other neurons, are connected to the soma through the logical equivalent of the

axons. Each channel, when activated, produces an input signal that is modulated

by the synaptic efficacies (or weights) wij, where i is the pre-synaptic and j the

post-synaptic neuron. The soma adds up these modified inputs

hj(t+ 1) =
∑
i

wijxi(t)

and compares the result with the neuron’s firing threshold θj. The unit emits a

logical output at the next time step, according to whether the sum of the weighted

inputs lies above threshold or not:

σj(t+ 1) = ϕ[hj(t+ 1) > θj]

Figure 3.1: Scheme of a McCulloch-Pitt’s formal neuron. Inputs xi reach the soma after
being multplied by synaptic weights wij . The soma releases an output if the total weighted
sum exceeds threshold θ.
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where the transfer function ϕ can be the Heavyside function or any nonlinear mono-

tonic function.

McCulloch and Pitts had already noticed that a network of formal neurons is ca-

pable of universal computation1, by choosing an appropriate set of weights {wij}.

In later years other groups expanded the field, studying large systems of logical

units and their computational properties, and nowadays McCulloch-Pitt’s neurons

are still used as the network basic elements when single neuron features can be put

aside.

3.1.2 Rosenblatt’s Perceptron

The most interesting among the many possible applications of the formal neuron

is the perceptron. This system, that initially has been investigated by Rosenblatt

(1962), consists in one or more layers of McCulloch-Pitts neurons with feed-forward

pathways going from lower layers to upper ones. The lowest layer receives the exter-

nal input, the highest computes the final output. Why is the perceptron interesting?

First because it involves parallel computing, which is actually what the brain must

be doing to produce complex responses in a few milliseconds, albeit the activation

time of a single neuron pertains to the same order of magnitude. The second reason

is that Rosenblatt proved that the perceptron, at least the most simple version with

only one layer, is capable of learning. He found a convergence theorem ensuring

that, following a specific learning rule, the weights can be updated iteratively to

reach the desired output result, given a specific input. At the time, this finding

provoked a wave of optimism in the scientific community, who believed that the

perceptron could be a promising candidate to be the basis for artificial intelligence

1The power of of calculating every sequence of logical functions in a finite time. To do so, the
device must be able to perform: boolean negation, one between conjunction and disjunction, and
an associative relation defined in the space of logical operations (Russel and Whitehead, 1910).
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devices. The enthusiasm partially dissolved when Minsky and Papert (1969) pointed

out that non linearly separable2 tasks, like for example the boolean exclusive OR

(XOR), could not be worked out by a single-layer perceptron. Furthermore, they

showed that performing some of these easy computations with the perceptron would

take an excessive amount of time, a result that has later been extended to all linear

threshold devices.

During the successive years, Rosenblatt and many others tried to bypass the problem

using multi-layer perceptrons, that in principles possess the capabilities to overcome

Minsky and Papert’s limitations. On the other hand, the learning algorithms for

multi-layer schemes are much more complicated, and there is no simple rule to find

the desired set of weights. For many years then, the artificial neural networks field

was abandoned by the majority of the researchers for more promising paradigms.

The interest in perceptron-like machines raised again in the community during the

mid-eighties, when the back-propagation algorithm, conceived by P. Werbos in 1974,

has been rediscovered and actively employed. To summarize its core in a few words,

Figure 3.2: The perceptron as it is described in Minsky and Papert (1969).

2Two sets of points in n dimensions are said to be linearly separable if they can separated by
a hyperplane in n− 1 dimensions.
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back-propagation allows multi-layered networks to find the correct weights associ-

ated with a specific set of input-output patterns. The key aspect is that errors (i.e.

the difference between the desired and the actual outputs) are sent back from the

last layer up to the first, where the weights are consequently updated for the next

upcoming pattern. In this way, the perceptron can be trained to perform complex

tasks and it is now utilized in data-mining, speech recognition tasks or financial

forecasting. Unfortunately, the algorithm has still some disadvantages: first it is not

guaranteed that the network reaches a global minimum (although the local minima

problem has been solved using stochastic noise in the dynamics), and second the

speed of convergence with the standard algorithm is extremely low.

3.2 Hopfield Networks

More interesting for us are, however, the developments that originated from the work

on associative content-addressable memory by Willshaw et al. (1969), Marr (1969;

1971), Anderson (1970), Amari (1972; 1977), Little (1974; 1978), and culminated in

the works of J.J. Hopfield (1982; 1984). Hopfield pointed out several subsantial con-

nections and similarities between recurrent neural networks and physical systems

with many degrees of freedom, such as magnetic lattices. Once established, this

equivalence opened up the field to the application of many theoretical and mathe-

matical tools that pertain to the field of statistical physics, leading to a much deeper

comprehension of neural networks from innumerable points of view.

Let us start from the original problem, which may be stated in the following way:

we would like to store p patterns ξµ (µ = 1, ..., p) in a McCulloch-Pitt’s neural

network and obtain that, when the initial condition is represented by a pattern ζ0,

the network extracts the memory that is most “close” to ζ0 among the stored ones.

What do we mean by “close”? In this context, memories are represented through
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binary words, whose size is determined by the number of units N populating the

network. Closeness may then be measured using the Hamming distance, defined as

the number of bits in which two patterns differ from each other. The network should

be able to select the pattern with the smallest Hamming distance from ζ0.

In this way, the network will retrieve the proper stored memory even when a par-

tial match or a noisy, flawed version of the original pattern is presented. This kind

of memory is content-addressable, meaning that one does not need to specify the

physical location of the pattern in the network (unlike in ordinary calculators), but

needs only to provide some clues about the content of the stored information. And,

as we have said, it is robust to small errors in the input pattern, at least to some

extent.

3.2.1 Networks dynamics: analogy with magnetic

systems in physics

The kind of network suited for this task is a recurrent network of formal neurons, that

is a perceptron where the output signal becomes the new input at the next temporal

cycle. However, unlike Rosenblatt’s formulation of the perceptron, in which all units

belonging to the same layer operate synchronously, neurons are now updated in a

random way (asynchronously). Synchronization has, in fact, the disadvantage, from

the point of view of both biology and physics, that some kind of global information

is needed: a universal time to which computational units have to adapt. Whereas in

conventional computers synchronization of the digital components is achieved using

a clock signal, there is no such global clock in biological systems. On the other

side, it is quite difficult to build a realistic model of temporal interactions among

nerve cells: real neurons fire when the membrane potential exceeds the threshold,

which, in turn, happens when a sufficient number of action potentials have reached
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Figure 3.3: Example of feed-forward recurrent network of McCulloch-Pitt’s units (Amit,
1989). The output of neurons ψi becomes the input ϕi at the next temporal step.

the pre-synaptic terminals. Thus, the activity of one neuron strongly depends on

the activity of the others. The easiest way to deal with this complexity is to make

the update process asynchronous and random. This, together with recurrency, gives

rise to nonlinear effects that determine the dynamics of the system.

Before going further, let us make a linear change of variables to facilitate calculations

in this section: instead of using 1 for firing and 0 for quiescent neurons (σi), we will

use, respectively, 1 and -1 (Si). Most results remain valid in both formulations, and

one can always go back to the original choice with a linear transformation. In terms

of the new variables, the equations of the dynamics become

Si(t+ 1) = sgn[hi(t+ 1) + hei > θi]

hi(t+ 1) =
1

2

N∑
j=1

wijSj(t) hei =
1

2

N∑
j=1

wij

where sgn(x) is the sign function, wij are the fixed synaptic efficacies, hi(t) is the local

field acting on the i-th spin (neuron), induced by all surrounding spins (neurons),

and hei is analogous to a static external field, independent from the state of the other
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neurons. This external contribution may exert a strong influence on the network

behaviour, but here, for the sake of clarity, we choose the thresholds to be θi = hei in

order to balance its effect. Then, by redefining the synaptic weights as Jij =
1

2
wij,

we get

Si(t+ 1) = sgn[hi(t+ 1) > 0]

hi(t+ 1) =
N∑
j=1

JijSj(t)
(3.1)

Keeping in mind these equations, we can illustrate the two crucial hypotheses made

by Hopfield in his 1982 work:

1. synaptic weights are chosen according to the generalized Hebb’s rule (see Sec-

tion 2.2.3), which states that changes in the synaptic plasticity are determined

by the correlations in the activities of pre- and -post-synaptic neurons during

learning. This prescription, which is part of a much wider and deeper theory,

has often been condensed into the catchy phrase neurons that fire together,

wire together : two neurons that had repeatedly fired together will be more

likely to fire in future. Applied to the present case, since we train the net-

work to learn p patterns, the simplest rule is given by a superposition of these

patterns:

Jij =
1

N

p∑
µ

ξµi ξ
µ
j (3.2)

2. the network is fully connected (every neuron is connected to all other neu-

rons), and all connections are symmetric: Jij = Jji. While it is possible to

find (almost) fully connected networks in the brain at a local scale, symmet-

ric synapses are not biologically plausible for several reasons, including the

fact that most neurons are either inhibitory or excitatory only3. However,

3This principle is known as Dale’s law.
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the postulate has proved to be immensely useful, for it is fundamental to the

equivalence with disordered physical systems, which, in turns, made possible

the employment of statistical mechanics for calculations. For the sake of sim-

plicity, in this thesis we ignore autorecursive connections (Jii = 0) that, by the

way, do not influence the qualitative behaviour of the model.

These assumptions allow for the definition of a Lyapunov function for the system4

E = −1

2

∑
i

∑
j 6=i

JijSiSj (3.3)

whose minima are, by definition, attractors of the dynamics (Khalil, 2002). In fact,

if we calculate the variation in the Lyapunov function caused by the inversion of one

bit S ′i = −Si :

∆E = E ′ − E = 2Si
∑
j 6=i

JijSj

that is always negative because

S ′i = sgn
[∑

j

JijSj

]
≡ −Si

Hopfield noticed that this model is isomorphic to the well-known Ising model for

magnetic lattices at zero temperature. Hence, the properties of a Hopfield network,

also called Attractor Neural Network (ANN), can be investigated with the tools de-

veloped in the statistical mechanics of disordered systems and spin glass theory. One

simply needs to replace the variable describing neuronal activity with a quantized

variable, that schematically represents the orientation of the magnetic spin on each

site of the lattice. At the same time, the interaction between post- and pre-synaptic

neurons is supplanted by the spin-spin magnetic force, and the Lyapunov function

4Indeed, while the condition of complete connectivity may be relaxed (Derrida et al., 1987;
Sompolinsky, 1986), the hypothesis of symmetric synapses is crucial for the definition of the Lya-
punov function (Amit, 1989).



3.2 Hopfield Networks 33

Figure 3.4: Example of energy landscape in the configurations space. Purple-labeled
energy minima are attractors of the dynamics.

is identified with the energy of the system. If we map each state of the network, cor-

responding to a particular configuration of neural activities, to a 2N hypercube, we

can imagine a ”landscape” formed by the energy function in the states space where

lower points and valleys correspond to fixed points5. In absence of noise, when the

dynamics is fully deterministic, the configuration of the network will always evolve

towards one of this attractors, and, once inside the basin of attraction, will remain

there forever. These attractors are, indeed, the recalled patterns: the retrieval de-

pends on the initial stimulus (i.e. a corrupted version of the original pattern) and

it is stable, since the network remains stuck there until a new stimulus is presented.

3.2.2 Stability of retrieved memories

Attractors of the network dynamics are determined by the synaptic weights6: in

the previous noiseless case it is easy to see that the stored attractors are stable

5Be aware that the landscape picture makes sense only if it is possible to find a Lyapunov
function for the system. If, for example, connections are not symmetric, it would not be possible
to define such function, since the distance between two points in the configurations space would
depend on the direction of moving.

6In the context of spin glass theory, the role of the synaptic weights is played by the magnetic
interaction.
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fixed points of the dynamics, when eq. (3.2) holds (Amit, 1989; Hertz et al., 1991).

Let us sketch the key points of the demonstration. In general, it is preferred to

draw input memories from some probability distributions, instead of specifying the

value of every single bit. A common choice that gives uncorrelated patterns is

the binomial distribution on {1,−1}. Using the Hebb generalized, one can train a

fully connected network with asynchronous dynamics to memorize p random and

uncorrelated (almost orthogonal) patterns. The condition for the stability of the

attractor corresponding to memory ξµ is (from eqs. 3.1):

ξµi = sgn
[
hµi
]

∀ i

that is equivalent to requiring

ξµi h
µ
i > 0 ∀ i (3.4)

The local field perceived by the i-th neuron is

hµi =
N∑
j=1
j 6=i

Jijξ
µ
j =

1

N

N∑
j=1
j 6=i

p∑
ν=1

ξνi ξ
ν
j ξ

µ
j

using Hebb rule. Hence

ξµi h
µ
i =

1

N

N∑
j=1
j 6=i

p∑
ν=1

ξµi ξ
ν
i ξ

ν
j ξ

µ
j

separating from the sum the term that concerns ξµ, one gets:

ξµi h
µ
i =

1

N

N∑
j=1
j 6=i

(
ξµi
)2(

ξµj
)2

+
1

N

N∑
j=1
j 6=i

p∑
ν=1
ν 6=µ

ξµi ξ
ν
i ξ

ν
j ξ

µ
j =

=
N − 1

N
+

1

N

N∑
j=1
j 6=i

p∑
ν=1
ν 6=µ

ξµi ξ
ν
i ξ

ν
j ξ

µ
j > 0

(3.5)
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the first factor is the signal, since it expresses the contribution of the tracked memory,

the second term gathers the interfering effect of the other patterns, and is therefore

called noise7. As far as the noise factor is smaller than the signal, the attractors

are stable and the memory is successfully recalled. Noise is of course zero when all

patterns are all perfectly orthogonal. Instead, for uncorrelated, unbiased patterns,

the sums inside the noise term are equivalent to a random walk of ∼ (N − 1)(p− 1)

steps of magnitude ±1. The mean of a random walk, whose probability distribution

is simply a binomial, is zero and the variance, i.e. the average fluctuation around

the mean, is of order (N−1)(p−1). Hence, in the limit of large networks (N →∞),

eq. (3.5) may be rewritten as

ξµi h
µ
i ≈ 1 +Noise > 0 |Noise| =

√
p

N

from which we notice that, if the number of stored patterns is much smaller than the

number of units (p� N), the dynamics would not jump out of attractors once has

reached one of them, i.e. memories are stable. Moreover, if the network is shown

a corrupted stimulus (obtained by flipping a fraction d of bits) instead of correct

pattern ξµ, the dynamics will anyway converge and stay into the desired stable state,

provided that d is not too large. In fact the local field acting on the i-th neuron

would read

hi = 1− 2d+Noise ≈ 1− 2d+O
( 1√

N

)
meaning that, as long as 1−2d� N−1/2, the network is still in the basin of attraction

of the desired memory ξµ.

Unfortunately, in addition to the p requested pattern, some unwanted, spurious

7Sometimes, like in Sections 3.2.1 and 3.2.2, the word noise refers to the presence of a stochastic
term in the dynamics which can destabilize spourious attractors, that may be introduced into the
equations as a fictious temperature. Here, in Section 3.3.2 and in Chapter 4, it refers to the
fluctuations induced in the signal by non-orthogonal patterns.
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states also obey condition (3.4) and are, therefore, local energy minima, causing

errors in the retrieval. Such states are, for example, linear combinations of an odd

number of stored patterns, or simply the reversed version of the originals
(
−ξµ

)
. To

avoid the possibility that the system selects one of these states, one must introduce

some sort of stochastic noise in the dynamics8, so that the system can jump out

of the basin of attraction of spurious states (which by the way is smaller than for

the originally stored patterns). In the equations, noise is introduced as a pseudo-

temperature, since it plays the role of temperature in spin glasses, representing the

stochastic disorder always present in real networks (Amit, 1989). A disorder that

may be due to fluctuations in neurons’ firing rate and in the synaptic efficacies, or

to any kind of external noise acting on the network.

In the presence of noise, of course, the network is not deterministic anymore, and

each time we run eqs. (3.1) we would get a different realization. Thus, to calculate

the relevant quantities, it becomes necessary to average over all possible realizations,

by making use of the ordinary methods of statistical mechanics9.

3.2.3 Network storage capacity

One of the most powerful results in the field has been obtained by D. Amit, H.

Gutfreund and H. Sompolinsky (1985; 1987), who applied mean field theory and

the replica method to calculate the memory capacity of a Hopfield network. The

patterns to be stored were generated at random
(
Pr(ξµi = 1) = Pr(ξµi = −1) =

1

2

)
and the network was tested with and without noise in the dynamics.

The final result is exhibited in Fig. 3.5 in the form of a phase diagram whose axis

are the noise level, i.e. the pseudo-temperature T , and the load parameter α =
p

N
,

8This kind of noise is often referred to as fast noise, to distinguish it from slow noise, which is
caused by interferences among the stored patterns.

9These methods are valid if the system has reached an equilibrium state. For systems that are
out of equilibrium, things are much more complicated since Gibbs’ formulation loses its validity.
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Figure 3.5: Phase Diagram of the Hopfield model (Amit, 1989).

that is the number of desired patterns divided by the number of neurons composing

the network. For very high T the system is a paramagnetic-like phase, where the

dynamics is ergodic and every state with 〈Si〉 = 0 is visited with equal probability.

The energy function10 has no minima and no retrieval is possible at all. Moving

down along one of the lines indicated in the figure, the system enters in the so called

spin glass phase below Tg: there are an infinite number of energy minima but none of

them has a significant overlap with the desired state. If the load parameter is lower

than αc ≈ 0.138 the system goes into a ferromagnetic phase and retrieval of desired

patterns becomes possible. Inside this area, three distinct subphases may be put on

evidence: one between TM and TC , in which target memory states are local minima

and can be recalled even though the probability or errors is considerable. Then,

below TC , the desired memories are global minima of the free energy and retrieval

10When T 6= 0 the appropriate Lyapunov function is the free energy E − TS, since the entropy
contribution must included.
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is optimal, but, if α is too small, spurious stases, such as mixed combinations of the

stored memories, evolve into local minima and the system may fall into one of them.

Along the T = 0 line the replica symmetry is broken and an abrupt transition is

encountered when crossing the critical value of the load parameter αC : the average

overlap with desired states drops from about 0.97 to 0. The failure is due to the

fact that the number of spurious attractors grows exponentially with the number of

desired memories.

In the simplest case (T=0), then, the maximum number of retrievable patterns is

pmax ≈ αCN , allowing for small errors (< 1.5%). This result is compatible with the

work of Weisbuch and Fogelman-Soulié (1985), in which they performed a signal to

noise11 analysis, similar to that of the previous section, for very large N . In that limit

the binomial distribution, typical of discrete random walks, can be approximated by

a continuous gaussian distribution. Using this fact and requiring that the probability

of error in any bit of all desired patterns goes to zero in the thermodynamic limit,

one gets an expression for the maximum capacity in the zero temperature limit:

pmax '
N

4 log(N)
(3.6)

but, of course, it is still true that, as soon as p is higher than 0.138N , all memories

are suddenly lost, since their overlaps drop to zero.

3.3 Realistic constraints on learning

Many studies highlighted the robustness of the Hopfield model, even to rather drastic

alterations of its original hypotheses, like a less strict hebbian prescription, asym-

metrical weights or diluited connections. However we have seen that, as soon as

11Here noise simply denotes the square root of the fluctuations in the network activity caused
by the corrupted inputs, and it is not related to the pseudo-temperature T .
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we exceed the maximum capacity by adding more patterns to be stored, the entire

memory of all patterns is suddenly lost12. This makes the model inconvenient for

practical purposes, such as artificial implementations, but is also against common

human experience: we do not lose memories all together when a certain threshold is

crossed, instead we tend to progressively forget about past memories and to recall

recent facts more vividly.

3.3.1 Bounded synapses and stochastic learning

The first effort to overcome the disastrous blackout effect has been attempted by

Nadal et al. (1986), Mezard et al. (1986) and Parisi (1986), who proposed to modify

the Hebbian rule in such a way that the synaptic efficacies cannot become arbitrarily

large but, rather, run over a finite set of discrete values. This assumption has also

full biological relevance: as we have seen in Section 2.2.4, discrete synapses are com-

patible with experimental data from various areas of the brain. The second central

feature of the model, if the synaptic values have been properly set and bounded, is

that the network exhibits the palimpsest property: older memories are progressively

forgotten and only most recent patterns can be successfully retrieved. A compre-

hensive analysis was carried out by Sompolinsky (1986) for two- and three-states

clipped synapses. If synaptic efficacies are discrete and bounded, the network does

not fall into the total blackout state and its capacity is only slightly lower than the

result obtained by Amit and collaborators. But there was a key issue not considered

by these authors: those results were obtained by clipping the synaptic strength af-

ter constructing the synaptic matrix, thereby making the implicit assumption that

the desired patterns had already been learned somehow. What happens if, instead,

synapses are limited from the very beginning, before learning takes place?

12This is strictly true only for noiseless dynamics, but the effect is very similar, although more
gradual, also in the presence of noise.
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The consequences, exposed in Amit and Fusi (1992), lead to a drastic reduction

of the storage capacity from v O(N) to v O(logN), which makes this kind of

memory practically useless. The reason is that, in this scenario, the dynamics of

the learning process becomes important for studying the properties of the model.

In fact, the rate of pattern presentation, in respect to the synaptic refreshing time

constant, affects the properties of the network and can lead to very different results

for capacity. The simplest case happens when only one pattern is presented between

two synaptic clipping events. Each memory is presented only once and never again

(one-shot learning). Suppose we present a first memory pattern ξ1 to a network

with two-states synaptic strength: neuronal activity will be updated according to

eq. (3.1) with synaptic efficacies

Jij = ξ1
i ξ

1
j

The synaptic dynamics is usually much slower than neuronal dynamics, thefore the

state of the system would rapidly converge onto the attractor corresponding to ξ1,

before the occurrence of a new synaptic update, and the pattern is successfully

learned. However, when the next pattern, ξ2, is imposed, some synapses will be

refreshed again, according to Jij = ξ2
i ξ

2
j , and the memory of previous pattern previ-

ously contained in those synapses is completely erased. After p-patterns, the fraction

of synapses still preserving the initial memory are only v 2−p. Thus, after requiring

at least one synapse to be in the untouched group, one gets pmax v logN . This

learning dynamics quickly destroy any trace of older patterns, but, on the other side,

new patterns are perfectly learned.

In order to improve the network capacity, the learning process should be somehow

modified to slow down the forgetting process, at the cost of reducing the precision of

one-shot learning. This can be done by limiting the number of synapses that update



3.3 Realistic constraints on learning 41

their values at each refreshing cycle. Ideally, the network would need a mechanism

to select only some of the synaptic strength to be updated, upon the arrival of a

certain input. A suitable solution for unsupervised13 learning is stochastic synaptic

plasticity: each synaptic weight undergoes a transition only with some probability.

When a new stimulus approaches, only some fraction of all synapses is actually

refreshed. As a consequence, the activity of the network detected right after the

pattern presentation will show a smaller overlap with the original stimulus, but, on

the other side, synapses bearing the memory traces of older patterns will be less

likely changed.

In this thesis we will use the stochastic learning framework to memorize patterns.

For this reason a more detailed account of the model is given in Section 4.1.1.

3.3.2 Sparse coding

So far, input patterns were generated completely at random: the average activity

triggered by one pattern was 〈ξµi 〉 = 0 for {+1,−1} units, or equivalently 〈ξµi 〉 =

1

2
for {1, 0} neurons. We will now discuss the results for unbalanced (or biased)

memories with neurons taking 0, 1 values, in particular when patterns are sparse,

i.e. trigger low average activity levels in the network. Patterns are drawn from a

binomial distribution with probabilities

Pr(ξµi = 1) = f Pr(ξµi = 0) = 1− f

where of course f =
1

2
in the unbiased case, and f � 1

2
in the sparse limit. The

average number of active neuron per pattern is not zero anymore since

〈ξµ〉 =
1

N

N∑
i

ξµi = f

13Unsupervised learning means that the network does not make use of an external guidance for
modifying the learning parameters, such as synaptic weights.
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There are at least two reasons for considering biased memories. The first comes

from the results exposed in the last section: the overlapping portion between two

patterns acts as a noise for the dynamics, thereby reducing the effective size of the

basin of attraction of each memory. A lower average activity means less interfer-

ences, and thus less noise and more stability, suggesting some advantages in terms of

capacity. The second reason regards experimental evidences of neural activity in the

cortex: leaving out some nontrivial difficulties in measuring the sparseness in real

brain, experiments suggest a high degree of sparseness in many areas, such as the

hippocampus (Barnes et al., 1990; Jung and McNaughton, 1993), medial temporal

lobe (Quiroga et al., 2005), visual memory experiments in Inferotemporal cortex

(Brunel, 1994; Miyashita, 1988; Rolls and Tovee, 1995; Sato et al., 2007).

The general problem for biased patterns (with unbounded synapses) has been treated

by Tsodyks and Feigelman (1988), Buhmann et al. (1989), and Gardner (1988), who

found some very interesting results at the price of little modifications in the con-

struction of the synaptic matrix.

They took the local hebbian rule of eq. (3.2) adding a global factor proportional to

the average activity of the network:

Jij =
1

f(1− f)N

p∑
µ

(ξµi − f)(ξµj − f) (3.7)

Furthermore, they did not set the threshold value as to balance the external field

(θi = hei ), but instead used a uniform threshold U that, they noticed, optimizes the

network memory capacity. The local field acting on the i-th bit, when the network
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lies in the attractor corresponding to stimulus ξ1, reads

h1
i =

N∑
j=1
j 6=i

Jijξ
1
j − U =

1

f(1− f)N

N∑
j=1
j 6=i

(ξ1
i − f)(ξ1

j − f)ξ1
j +

+
1

f(1− f)N

N∑
j=1
j 6=i

p∑
µ=2

(ξµi − f)(ξµj − f)ξ1
j − U

where we have divided the signal and the noise term. The signal is simply given by

S = ξ1
i − f

and thus depends on the the value of ξ1
i , being equal to either 1 − f when ξ1

i = 1

or to −f when ξ1
i = 0. The threshold U is conveniently chosen to optimize the

contributions coming from properly oriented spins and, at the same time, minimize

the noise provoked by the wrongly flipped ones:

U =
1

2
− f

The global factor inside eq. (3.7) cause the noise term to be zero on average, but,

similarly to Section 3.2.2, it fluctuates with variance given by:

N 2 =
1[

f(1− f)N
]2 N∑

j 6=i

N∑
k 6=i

p∑
µ=2

p∑
ν=2

(ξµi − f)(ξµj − f)ξ1
j (ξ

ν
i − f)(ξνk − f)ξ1

k

where the only surviving terms are those such that µ = ν and j = k. Hence the

variance is equal to

N 2 =
1[

f(1− f)N
]2 N∑

j 6=i

p∑
µ=2

(ξµi − f)2(ξµj − f)2
(
ξ1
j

)2
=

=
p[

f(1− f)
]2
N
〈(ξµi − f)2〉〈(ξµj − f)2〉〈ξ1

j 〉 = f
p

N
≡ fα
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The signal to noise ratio is

S
N

=
1

2
√
fα

A rough estimation of the capacity is obtained requiring the signal-to-noise ratio to

be at least of order one, then

αc(f) ≈ 1

4f

The more rigorous calculation performed by (Buhmann et al., 1989; Tsodyks and

Feigelman, 1988), who employ the methods of mean field theory, returns for the

capacity

αc(f) = − 1

2f log f

This expression diverges for very small f , confirming the previous intuition about

interfering patterns. Reducing the coding level allows for a much higher storage

capacity, but, of course, it diminishes the average amount of information carried by

each pattern. To mantain a finite amount of information per memory, in the limit

of large networks (N → ∞), one could set the coding level as low as f =
logN

N
,

and obtain an optimal storage capacity of

pmax ≈

(
N

logN

)2

At this point the advantage of using sparsely coded patterns should be sufficiently

evident: at the price of losing some of the information content carried by each pat-

tern, the capacity is enormously enhanced compared to the unbiased patterns case.

Furthermore, this feature arises for {1, 0} units only, which is the most natural choice

for modelling a firing and a quiescent neuron. Instead, some caution is needed when

mapping to the {+1,−1} picture, since correlations give rise to different results.
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3.4 A hierarchy of memories

Starting from sparse patterns, some authors studied the network behaviour when

the desired memories exhibit a certain degree of correlation with each other. Ini-

tially, the effort was inspired by the fact that the energy minima in the Sherrington-

Kirkpatrick (SK) spin glass model (Sherrington and Kirkpatrick, 1975) with long

range interactions form an ultrametric tree (Mezard et al., 1987). The well known

analogy between spin glass models and Hopfield networks elicited a wave of interests

towards the utilization of ultrametric hierarchies in ANN (see next section).

But a second important reason for studying correlated patterns is that the encoding

of uncorrelated quasi-orthogonal patterns does not seem to be a suitable strategy,

if one aims to model the human memory. It appears indeed evident that our mem-

ories are deeply connected, tied to each other to the point that recalling a single

event may evoke a cascade of closely related experiences (Klatzky, 1980). A natural

way to build these relationships among experiences would be to organize them into

categories: similar stimuli cluster together to form different groups and subgroups.

The formation of a structured hierarchy helps both memory storage and retrieval.

For example if we need to store a sequence of animals, it would be more convenient

to memorize a stylized patterns that embrace some common features, such as the

number of legs or the presence of a tail, and then distinguish every single animal for

its peculiar characteristic (e.g. giraffe’s long neck or rhinoceros’ horn). This way,

the network does not have to memorize all the informations about each pattern,

but can, instead, store a smaller portion related to the specific differences between

the pattern and the category representation. The more similar is the pattern to the

cluster prototype, the lesser would be the stored information, and hence, the higher

the network capacity.

Evidences for memory categorization emerge in the inferior-temporal cortex (Kriegesko-
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rte et al., 2008; Sato et al., 2007; Tsunoda et al., 2001; Wang et al., 1996), in the

parietal cortex (Freedman and Assad, 2006), as well as in the hippocampus (Hamp-

son et al., 2004) and in the medial-temporal lobe (Kreiman et al., 2000). The results

of Fig. 3.6, taken from the work of Kriegeskorte et al., show that the neural repre-

sentations of stimuli tend to form clusters based on their mutual similarity.

3.4.1 Ultrametric trees

We have said in the previous section that a candidate model for representing hierar-

chical structures is given by ultrametric trees, given the analogy with energy minima

in the SK model. The mathematical concept of ultrametricity is often employed in

disciplines like semantics, taxonomy and data analysis, since it allows the study of

hierarchial categorizations with an accessible mathematical formalism.

Ultrametric spaces are characterized by a different definition of the metric distance

compared to usual euclidean spaces. The ultrametric version of the usual triangular

inequality is

d(A,C) ≤Max
(
d(A,B), d(B,C)

)
(3.8)

which implies that three points in an ultrametric space may only form equilateral

triangles or isosceles with one edge shorter than other two14.

An explicit graphical representation of an ultrametric space is an indexed hierar-

chical tree (see Fig. 3.7), where the distance between points, lying at the bottom

of the tree, is a function of the number of steps one has to climb in order to find

the first common ancestor. It has been demonstrated by Rammal et al. (1986) that

any unbiased evolution process, acting on a system with many degrees of freedom

(high number of neurons N in our case), gives rise to an ultrametric set of vectors

14This is not the only topological oddity of these spaces, in fact each point lying inside a ball
of radius r is itself at the center of the ball, and the radius of the ball coincides with its diameter.
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Figure 3.6: Hierarchical clustering of patterns in human (top) and monkey (bottom) IT
cortex, from Kriegeskorte et al. (2008). Experimenters measured the degree of dissimilarity
(1-r) among neural patterns, in response to the presentations of objects in the visual field.
Human data are collected from fMRI study while monkey data come from single-cell
recordings. The intraspecies analysis proceeds from single-image clusters (bottom of each
panel) and successively combines the two clusters closest to each other in terms of the
average response-pattern dissimilarity, so as to form a hierarchy of clusters (tree structure
in each panel). On the vertical axis is shown the average response-pattern dissimilarity
between the stimuli of the two linked subclusters. Quite amazingly, hierarchical trees for
monkey and human present a similar categorization tendency, although they are the result
of completely independent experiments and analysis techniques. For example, all human
faces trigger a similar neural response-pattern in both experiments. Subcluster trees are
coloured for easier comparison (faces, red; bodies, magenta; inanimate objects, light blue).
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ξµ

...ξµ1 ξµp1

ξµ11 ξµ12 ξµ1p2 ξµp11 ξµp12 ξµp1p2

Figure 3.7: Ultrametric tree with four generations. The distance between any of the
yellow states obeys the ultrametric inequality eq. (3.8). The branching ratio is not
globally fixed but depends on the layer at which the branching occurs.

that can be organized within a hierarchical tree. Thus, by choosing the appropriate

stochastic process responsible for the evolution, one could generate a correlated set

of neural activity patterns placed at the bottom of an ultrametric tree.

As an example, let us examine the ultrametric tree shown in Fig. 3.7. The high-

est node is occupied by the prototype, a vector pattern ξµ whose N elements are

chosen at random from a discrete, two-state (0,1) distribution. The first generation

of descendants ξµ1, ξµ2, ..., ξµp1 is generated by flipping each component of ξµ with

probability distribution P (ξµκi |ξ
µ
i ), fixed for all ξµκ. Repeating this procedure with

all the newborn patterns, one obtains a third layer of branches defined by probabil-

ity distribution P (ξµκρi |ξ
µκ
i , ξµi ), and so forth for as many generations as wished.

For patterns belonging to the very last ramification, there exists a metric function

that obeys eq. (3.8) when N →∞:

dh
(
ξa, ξb

)
=

1

N

N∑
i=1

[
ξai (1− ξbi ) + (1− ξai )ξbi

]
(3.9)
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that is the Hamming distance for binary (ξi = 0, 1) patterns. This is, by definition,

a measure of pattern similarity. In fact, patterns whose common ancestor is found

in a lower layer share more features than patterns whose first commutual forefather

is located at the top of the tree. Moreover, it is important to notice that, because

of the way we defined the stochastic evolution, ancestor vectors coincide with the

average of all their offsprings. It is easy, then, to identify vectors that branch from

the same node as elements of a cluster or subcluster, whose prominent common

features are summarized in the correspondent ancestor.

Parga and Virasoro (1986), at the price of a slight alteration of the Hebbian

learning rule, constructed a network that is able to memorize these ultrametric

hierarchies in the static case and with unbounded synapses. In the next chapter, we

will use ultrametric trees to model input patterns stored in a dynamic manner, to

test if the network is somehow capable of generalization, that is to retain the features

common to the whole cluster, and discard those peculiar to each single vector.



Chapter 4

Learning models and simulations

Summary of results

In this section we investigate the behaviour of a recurrent network of binary neurons

(ξi = 0, 1) and bounded synaptic strength performing an associative memory task

(Amit and Fusi, 1994). As we exposed in the previous chapter, this network displays

the palimpsest property, i.e. it retains only the most recent memories, while older

ones are gradually overwritten. Our aim is to estimate and optimize the average

lifetime of a typical memory that, we will see, it is a good estimator to the storage

capacity of the network. We postulate that the synaptic efficacy can take only two

values (J = 0, 1), that the network is fully connected, and that synaptic updating

occurs on a sufficiently large time scale, so that the underlying neural dynamics

converges to the desired attractor before the arrival of a new stimulus.

First we carry out the complete analysis of the random and uncorrelated case in the

sparse coding limit. We calculate the signal produced by a generic memory, defined

50
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as the degree of correlation between the synaptic matrix and the given pattern, and

the variance of the signal caused by the learning of other memories. This method is

known in the physics literature as mean field approximation. The maximum mem-

ory capacity of the network is derived imposing a lower bound on the signal-to-noise

ratio: if the memory signal is so low that fluctuations may dominate, the memory is

considered to be lost. With random and uncorrelated patterns the optimal capacity

is reached for very sparse patterns.

In the second part of the chapter, we turn our attention to ultrametric hierarchies

consisting first of two and then of three levels. Each ultrametric tree consititutes a

separate class that spreads from a prototypical pattern. This pattern is constructed

as the average of all patterns belonging to that specific cluster. Similarly, when the

hierarchy is composed of three stages, patterns occupying intermediate nodes are

the averages of their descendants. This property yields the definition of subclass, a

group of patterns that are more correlated with themselves than with other mem-

bers of the class.

We derive the mean field equations that determine the expression of the overlaps

between the synaptic matrix and the pattern of interest, and we test them with

several simulations. Interestingly we found that the network is capable of catego-

rization, i.e. of learning the class or the subclass prototype only by extracting the

average features of the presented stimuli. Categorization occur when the following

conditions are verified:

1. slow learning, meaning that only a small fraction of synapses is affected by the

presentation of a new pattern. One the one hand, decreasing learning speed

helps old patterns not to be erased, on the other hand, however, it makes more

difficult for new memories to be learned.

2. sufficiently high correlations between class (or subclass) members and proto-
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types. In fact, if intra-class patterns have only a small number of features

in common, the overlap of the synaptic matrix with the prototype would be

weak.

The categorization property is then exploited to build a sparser representation of

the stimuli. In fact, since we can extract the class ancestor using a properly tuned

network, we can imagine to have a second network that stores the uncorrelated

fraction of bits between a prototype and a class member. The original pattern is then

retrieved automatically, as the input recalls the prototype pattern stored in the first

network, which in turn projects to the other network cointaining the uncorrelated

portion. This way we significantly enhance the number of stored memories, at the

price of adding a network to the system.

4.1 Random and uncorrelated memories

Each memory that we impose to the network produces a different pattern of neuronal

activity, and consequently triggers the learning process through the modification

of the synaptic efficacies. At this point two distinct sources of stochasticity may

affect learning: the first is given by the sequence of presentation of the inputs

and the second by the stochasticity in the synaptic potentiation and depression

mechanism, that we have seen to be a condition for learning in Section 3.3.1. This

stochasticity may play the part of a non-deterministic noise in the real brain, either

due to intrinsic fluctuations in the system (in the neurons spiking activity or in

synaptic thresholds) or to the fact that the brain can suffer unequal conditions in

different contexts. In this section we will present past results regarding uncorrelated

streams of inputs, mainly due to the work of Amit, Fusi and Brunel. The brain

receives a massive amount of external stimuli from a reality that is often coherent:

both natural and human crafted environments show structured (though sometimes
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Figure 4.1: Topology of the fully connected network we study in this thesis. We consider
connections Jij and Jji between neurons i and j as distinct synapses.

extremely complex) patterns. Sensory patterns approaching neural networks are

therefore correlated, both spatially and temporally. It seems reasonable to argue

that neural circuits have been shaped by evolution in order to be optimized for the

world we live in, and correlations must be somehow exploited for this purpose. As

a first primitive approximation it is anyway preferrable to start investigating the

learning of a group of uncorrelated, randomly generated stimuli, before proceeding

towards more complex scenarios.

A memory is represented by a string of N binary variables ηi, (i = 1, ..., N):

ηµ{i} ≡ 10001011010000010010101000011001010

The variables may assume values 0 or 1, meaning that i-th neuron is respectively

quiescent or active with probabilities

P (ηµi = 1) = f P (ηµi = 0) = 1− f (4.1)

where f is called coding level. Thus the average number of active neurons per

memory is fN .
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4.1.1 Synaptic dynamics and input statistics

As we have previously pointed out in section 3.2, the ability to store memories re-

sides in the modification of the connections among pairs of neurons. When a certain

pattern of activity is imposed to the network, it triggers a change in the synaptic

strengths depending on the pre- and post-synaptic neurons status. Synaptic plas-

ticity mechanisms are regulated by complex biochemical processes, for this reason

synaptic modifications may occurr over many different time scales leading possibly

to graded changes, but this aspect is still strongly debated.

Over longer time scales, however, the memory should be mantained even in the ab-

sence of the stimulus leading to a narrow number of stable synaptic states. In our

model, to keep things simple, we have chosen to bound the synapses between two

values, a depressed (J = 0) and a potentiated state (J = 1). Along the same lines of

simplicity, we will make use of a convenient learning rule, which establishes that a

synapse is potentiated with probability q+ when both the pre- and the post-synaptic

units are firing, is depressed with probability q− when only one of them is activated,

and stays unchanged when they are both quiescent:

Jij(t− 1) = 0 → Jij(t) = 1 with probability q+η
t
iη
t
j

Jij(t− 1) = 1 → Jij(t) = 0 w. p. q−[ηti(1− ηtj) + (1− ηti)ηtj]

Jij(t) = Jij(t− 1) otherwise

the first transition is identified as LTP , the second as LTD. Another interesting

learning rule is the one proposed by Tsodyks and Feigelman (1988) for unbounded

synapses and extended to bounded ones by Ben Dayan Rubin and Fusi (2007), which

allows the suppression of the linear correlation term in the variance of the signal that

we will shortly define. We preferred the former because the latter requires a finest
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tuning when optimizing the network for better performance. Thus, according to

our prescription, each synapse can shift stochastically between two discrete states,

0 and 1, as more and more patterns are shown to the network.

4.1.2 Signal to Noise analysis

To keep track of the changes provoked by each memory, we will look at the condi-

tional probability distribution function for the synaptic strength gµJ (t), which con-

veys the probability that a synapse has value J at time t conditioned on the pattern

of neuronal activity imposed by a generic memory µ. More formally, the normalized

signal is defined as

Sn(t) = gµJ=1(t) = E

[
1

f 2N(N − 1)

∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
(4.2)

namely the overlap between the synaptic matrix and a given pattern µ at time t.

The normalization keeps the signal between zero and one, detailed calculation are

reported in the Appendix A.

Following the work of Amit and Fusi (1994), the procedure is summarized in the

following steps:

1. we randomly generate a long sequence of uncorrelated memory patterns and

impose it to the network. Each pattern is displayed only once in the sequence.

2. keeping constant the rate of stimuli presentation, we let the synapses reach

the equilibrium distribution J∞.

3. we choose one particular memory µ, which is not special in any sense, and

show it to the network.

4. we track the memory trace by counting the number of synaptic modifications
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originally produced by pattern µ that are still left in the system. In the context

of binary neurons and bistable synapses, the signal defined in 4.2 is estimated

by the conditional distribution of potentiated (J = 1) synapses:

gµ(t) = P (Jij(t) = 1|ηµi = 1, ηµj = 1)

This quantity measures how well the prototype pattern µ has been memorized by

the network during the learning process. Distribution gµ(t) critically depends on the

state of the synaptic matrix, which fluctuates reflecting the statistics of a specific

input sequence imposed to the network. As we do not consider the details of neural

dynamics, looking at this observable does not exhaust in any sense the problem

of memory retrieval. Instead, by restricting our attention to it, we can at least

determine the necessary conditions for memory storage and retrieval, and, in the

future, look at the sufficient ones including all underlying features.

In our protocol time is discrete, meaning that first pattern is presented at t = 1,

second at t = 2, n-th pattern at t = n and so on1. As a consequence the synaptic

update process is a Markov chain in discrete time. Since, for any given synapse, it

is always possible to leave one state with finite probability, i.e. there are not any

absorbing states, the Markov chain is ergodic and irreducible (Cox and Miller, 1977),

and the corresponding transition matrix M has one eigenvalue equal to one, leading

to an equilibrium distribution after a sufficient number of presented memories, and

a second eigenvalue related to the relaxation time2. The structure of matrix M is

of the form

M(J(t+ 1)|J(t)) =

 1− α α

β 1− β

 with eigenvalues

{
λ1 = 1

λ2 = 1− α− β
(4.3)

1During the period separating two consecutive presentiations the dynamics is supposed to
converge to the proper attractor.

2The amount of time taken by the system to reach the equilibrium state after a perturbation
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In the case of random and uncorrelated patterns we have

M =

 1− 2f(1− f)q− 2f(1− f)q−

f 2q+ 1− f 2q+

 {
λ1 = 1

λ2 = 1− 2f(1− f)q− − f 2q+

where 2f(1 − f)q− is the probability of finding a firing-quiescent pair of neurons

times the synaptic depression probability, and f 2q+ is the probability of finding a

pair of active neurons times the synaptic potentiation probability. The dynamics of

conditional distribution gµJ (t) may be written as

gµJ (t) =
∑
K

gµK(t− 1)MKJ =
∑
K

gµK(0)(M t)KJ (4.4)

where we can write the second equivalence only if the process is time homogeneous,

i.e. M does not depend on time and on the particular sequence of presentation. This

is always true when patterns are randomly chosen and uncorrelated. The spectral

representation of M t (if M has distinct eigenvalues) is

M t = U Λt V

where Λ is the diagonal matrix of the eigenvalues λi (i = 1, 2), columns ui of matrix

U are the right eigenvectors of M and rows vi of V the left eigenvectors:

U =

 1 α

1 −β

 V =
1

α + β

 β α

1 −1


Using this decomposition in (4.4) for potentiated synapses (J = 1) we find

gµJ=1(t) =
2∑
i=1

λti
∑
K

gµK(0) uiKviJ=1 = gµ∞ (1− λt2) + gµ(0) λt2 (4.5)

where we have defined the steady state for the distribution of potentiated synaptic

efficacies as:
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gµ∞ ≡
β

α + β
(4.6)

It is clear, indeed, that any distribution converges to gµ∞ in a finite time, leaving

no trace of initial conditions gµ(0). Eigenvalue λ2 rallies the decay towards the

asymptotic state gµ∞. If memory pattern µ is presented at time t = 1 and the

network has reached the equilibrium distribution, we have that the initial value of

gµJ=1 is given by the conditional probability that a synapse was already potentiated,

plus the distribution representing those that were previously depressed but now are

potentiated with probability q+:

gµ(0) = gµ∞ + (1− gµ∞) q+

After the presentation of t patterns the synaptic matrix has undergone many changes

that must have weakened the original trace created at t = 0. In fact, synaptic

modifications induced by the imposition of a new pattern may regard some of the

synapses encoding our tracked memory, causing the progessive erasure of its trace.

Indeed, time evolution of the conditional distribution gµ follows equation (4.5):

gµ(t) = gµ∞ + (1− gµ∞) q+λ
t
2 (4.7)

For t→∞ the breakdown is exponential, in fact

λt2 = (1− α− β)t −−−→
t→∞

e−(α+β)t

gµJ (t) = gµ∞ + (1− gµ∞) q+e
−(α+β)t

from which we see that the network relaxes to the equilibrium state with a time

constant τ = (α+β)−1. How is the decay constant related to memory lifetime? How

many presentations does it take for the memory trace to be definitely lost? Quite

obviously, studying the signal is not sufficient if we want to answer these questions.
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Randomness in the order of presentation and uncertainty in the synaptic plasticity

rule cause the presence of stochastic fluctuations in the network. A particular state

of the system, apparently suggesting that the µ-th memory trace is still imprinted in

the synaptic efficacies, might instead be the result of a random deviation from the

equilibrium state. This happens because patterns are not mutually orthogonal, so

presenting a certain memory affects synapses that carry other memories’ signal. We

have already pointed out that our network does not take into account any underlying

neuronal dynamics, nonetheless we should not forget that the Hopfield model treats

memories as attractors of the neural dynamics. In this picture, two non orthogonal

memories are represented by attractors whose basins of attraction are ovelapping:

when the dynamics of the system falls in the shared portion, both basins are likely

to be reached. The network might then retrieve the wrong pattern, although it has

been showed the correct stimulus. This is due to the noise: random fluctuations

of the dynamics, coming from inside the synaptic matrix (non orthogonal patterns)

and from the variability in the number of active neurons per memory. We formalize

this concept by interpreting the noise as the square root of the variance:

N (t) =

√√√√V ar

[∑
i 6=j

Jij(t)ηiηj

]

In fact each memory pattern has fN nonzero bits on average but, since we generate

memories according to (4.1), the variance of the coding level about its mean is

f(1 − f)N . This variability in the coding level leads to dramatic consequences in

the noise level, as we may see later.

Before proceeding any further, let us ask a question: which is the fraction of neu-

rons that are activated, on average, by an upcoming stimulus in the real brain? This

question is still open and debated at all levels, and no exhaustive answer has been
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provided yet. Three possible strategies for coding are discussed in literature: dense

coding, local coding and sparse coding. In a dense distributed code each pattern is

encrypted by almost all neurons present in the network, which produces a massively

redoundant representation that makes the newtork resistent to possible errors and

single units faults. On the contrary, dense coding implies a high probability of inter-

ference amid different patterns which makes the decoding of the output particularly

difficult, since interfering memories would be not linearly separable. The opposite

limit corresponds to local coding, where each neuron, or small group of neurons,

represents a whole stimulus. Although such strategy avoids any interference or cor-

relation among different patterns, the capacity would be linearly proportional to

the number of units (neurons or small aggregations of neurons) encoding each single

memory, and it is therefore much smaller than in the dense coding representation.

Moreover, any correlation or association present in the upcoming input sequence is

disregarded even when it would be beneficial for generalization purposes. Sparse

codes combine advantages of local and dense codes while averting most of their

drawbacks. Increasing the number of active units introduces some overlap in the

patterns representation, but the network can, nonetheless, mantain a quite high

representational capacity. However, we have pointed out in Section 3.3.2 that the

number of input-output pairs that can be stored in an associative memory is far

greater for sparse than for dense patterns (Meunier and Nadal, 1995), because of

the reduced amount of information contained in the representation of any stored

pattern. As a much larger fraction of all input-output functions are linearly sepa-

rable using sparse coding, decoding becomes easier and less complex. In addition,

since generalisation takes place only between overlapping patterns, new associations

will not interfere with previous associations to nonoverlapping patterns.

In Appendix A the noise has been calculated explicitly in the sparse coding limit,



4.1 Random and uncorrelated memories 61

i.e. f → 0. Nevertheless, this assumption is supported by several experimental

results in various areas of the brain (see Section 3.3.2). Thus, in the limit of high

sparseness and large network (f → 0, N →∞, fN →∞), we have from Appendix

A:

N (t) = 2(fN)3/2
√
γµ(t)− fgµ(t)2

where γµ(t) ≡ P (Jij = 1, Jil = 1|ηµi η
µ
j η

µ
l = 1) is the conditional distribution proba-

bility for a pair of correlated synapses, i.e. sharing one pre- or post-synaptic neuron.

The second term within brackets is just the square of the conditional distribution

encountered in the signal times the coding level f. Both are probability distribution,

so all the dependency on the network size is contained in the factor N3/2.

For large t all time dependent terms vanish, thus we can rewrite the noise as

N (t) = 2(fN)3/2
√
γµ∞ − f(gµ∞)2

Now that we have obtained the expression for the noise, we are about to compare it

to the signal in order to check the attractor stability ad robustness, as it is suggested

in Amit and Fusi (1994). This will provide us with an upper bound on the storage

capacity of the network. To do this, we slightly modify the signal as it has been

introduced in (4.2): we remove the normalization factor and we subtract out its

asymptotic value, as we assume that a memory is certainly forgotten when its signal

is indistinguishable from the spontaneous activity of the network. Thus we have

S(t) = E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
− S∞

If memory µ is imposed at t = 0, the initial signal, in analogy with (4.7), is given

by

S(0) = f 2N(N − 1) (1− gµ∞) q+
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and after the presentation of t uncorrelated memories the original signal has de-

creased to

S(t) = f 2N(N − 1) gµ(t) = f 2N(N − 1) (1− gµ∞) q+e
−(α+β)t

for a large network (N → ∞ and the product fN → ∞) we can ignore the linear

term in N , finally getting:

S(t) = f 2N2(1− gµ∞) q+ exp
[
− (α + β) t

]
Hence, the signal-to-noise ratio (SNR) scales as:

S(t)

N (t)
=
√
fN

(1− gµ∞) q+

2
√
γµ∞ − f(gµ∞)2

exp
[
− (α + β) t

]
≈
√
fN exp(−t/τ) (4.8)

If we establish a threshold θ such that when the SNR value lies below θ the memory

is lost, we see that the maximum memory lifetime is limited by:

tmax <
(1

2
log(fN)− log(θ)

)
τ (4.9)

θ is chosen according to the desired error tolerance: the higher is the threshold in

the SNR, the lesser the mistakes in pattern retrieval process. Refer to Weisbuch and

Fogelman-Soulié (1985) for a deeper perspective and detailed calculations.

We consider memory lifetime and storage capacity of the network to be equivalent.

In fact, we argue that if a memory can be retrieved up to a certain time tmax after

its first appearence, then every memory that has been presented during this interval

could be recalled as well. The maximum storage capacity pmax grows, therefore,

linearly with decay factor τ , but is only proportional to the logarithm of N . In the

present case of random and uncorrelated patterns, the decay constant is
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τ = (α + β)−1 = (2f(1− f)q− + f 2q+)−1 ≈ O(f−1)

Memory lifetime may therefore be optimized by adjusting q+ and q− to balance the

depressing and potentiating synaptic transitions:

q+ = q q− =
qf

2(1− f)

Theferore the equilibrium distribution and the decay factor are rewritten as

gµ∞ =
β

α + β
=

q+f
2

2q−f(1− f) + q+f 2
=

1

2
τ = (2f 2q)−1 ≈ O(f−2) (4.10)

This result, first obtained in Amit and Fusi (1994), states that memory lifetime

depends quadratically on the inverse of the coding size f and linearly on potentiation

probability q+. Hence, in principle we could achieve longer memory lifetimes in two

ways:

1. slow learning : within our framework old memories are erased progressively

when new memories are learned, a kind of memory that has been called

palimpsest (Nadal et al., 1986; Parisi, 1986). The learning (and forgetting)

speed is poportional to the probability that a synapse changes its state conse-

quently to the impinging memory, q. Learning can be made slow by lowering

q, thereby helping memory preservation by reducing the rate of changes in the

synaptic matrix.

2. high sparseness : only a fraction f of the neurons is active for each memory.

Making memory sparse, i.e. adopting a small f , decreases the interference

between different patterns, this is to say that the number of active neurons

common to two or more patterns is scarce. Consequently the probability that a

new memory would alter synapses that were potentiated by older memories is
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Figure 4.2: Signal-to-Noise ratio for random and uncorrelated memory patterns. Simu-
lations are represented by the continous line, mean field approximation by the dotted line.
In this example: N = 1000, q = 0.5, Trials= 100. Red line f = 0.1. Blue line f = 0.05.

low, and older memory are less likely to be erased when new ones are imposed.

Obviously, extending the storage capacity must have a cost in terms of amount of

information initially stored in the network for each individual pattern. Slowing down

learning would, in fact, provoke a linear loss in the initial SNR, and concomitantly

a hyperbolic growth in the memory lifetime (for τ ≈ q−1). To increase sparseness

is more profitable: the linear contraction in the initial SNR is compensated by a

quadratic gain in memory lifetime. Nevertheless sparseness cannot be increased ad

infinitum, since the SNR needs to lay above threshold θ for the memory to be re-

trieved. Indeed, if the SNR is below threshold right after the presentation of the

tracked memory, the pattern cannot be stored at all and its lifetime is zero regardless
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of eq. (4.10). For this reason, Ben Dayan Rubin and Fusi (2007) impose a lower

bound on f , limiting the sparseness but allowing memories to be hold back and then

retrieved.

4.2 Correlated memories

In Section 3.4 we have drawn attention on the fact that human memories are always

related to each other, giving rise to some complex hierarchical structure. To model

these structures we make use of ultrametric trees as presented in Section 3.4.1, where

patterns represent nodes, and the distance between two vectors is given by eq. (3.9).

4.2.1 Two generations hierarchy

The ultrametric architecture introduced in Section 3.4.1 is organized in classes that

we will also label as families or clusters. Each class is originated from a prototypical

pattern ηµ (where now index µ labels both the prototype and the class) as in the

random and uncorrelated case. This ancestor memory collects the typical features

of that particular class. The class members (sons) are then generated by corrupting

the ancestor memory (or father) in a stochastic fashion (see Fig. 4.3). This way, the

father shares with each son a conspicuous number of features, obviously bigger than

in the uncorrelated protocol. Each son ηµν is therefore a noisy version of ancestor

µ. This is accomplished by reversing the activity of some neurons in the father

representation as discussed in Section (4.1). The conditional probabilities, fixed for

all classes and all sons, are

P (ηµνi = 1|ηµi = 1) ≡ u (4.11)

P (ηµνi = 0|ηµi = 0) ≡ v (4.12)
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In principle the number of flipping bits per son may be arbitrary, leading to a variety

of different coding levels across different sons and classes. For the sake of simplicity

we preferred to keep f constant, meaning that each class member presents, on

average, the same number of features of the prototype, some of which are common

to both. The coding level of a son is

f ∗ = fu+ (1− f)(1− v) and must hold f ∗ ≡ f

Probabilities u and v will therefore depend on f and on a parameter expressing the

grade of similarity between the sons and the father:

u = 1− (1− f)(1−m)

v = 1− f(1−m)

m = 0 corresponds to the random patterns example, and hence no classes are

formed, while the case m = 1 means that all the patterns that belong to one family

are identical to their ancestor. By choosing a set of probabilities that preserves the

average coding level f for all patterns, not only we simplify some of the following

calculations, but we also avoid a generation-dependent coding that could lead to the

trivial f = 0 or f = 1 cases as the number of generations grows.

Now we focus our attention on the dynamics of the synaptic matrix upon the

presentation of a sequence of stimuli. It is very important, as a first step, to clarify

the kind of sequence we aim to model: our effort is to describe a very simple scenario

where inputs are correlated in a way which is quite far from the natural world, since,

at this level of depth, we are only interested in the effect of correlation on storage

capacity of these stochastic networks. It seems reasonable to us if we choose, at

each time step, one father at random from one of the p uncorrelated classes, and



4.2 Correlated memories 67

Figure 4.3: Two generations hierarchy of memories: starting from father ηµ{i} a second

layer of p sons is produced. When generating each son a fraction (1−u) of father’s active
neurons are switched off, while a fraction (1− v) of father’s silent units are flipped.

then use it to generate a noisy pattern, i.e. a son, which is then imposed to the

network. This way we construct a fixed number of categories p and a virtually infinite

number of examples belonging to each category. The prototype never appears in

the input sequence, nevertheless its memory trace can be found in the network

when correlation with class members (the effective input) is high enough. A generic

stream, as seen by the network, is then of the form:

ηµ1, ην1, ηκ1, ..., ηp1 ; ηµ2, ην2, ηκ2, ..., ηp2 ; ... (4.13)

where the boxes delimit each sequence of inputs. To measure the correlation between

the synaptic architecture and the prototype patterns during learning process we use

the overlap introduced in Section 4.1.2:

gµ(t) =
1

f 2N(N − 1)

∑
i 6=j

Jij(t)η
µ
i η

µ
j (4.14)
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The same observable may be extended at patterns standing at lower layers in the

hierarchy. As we move down along the ultrametric tree we need to use more indexes

to identify the memories and the classes or subclasses they belong to. In the two

generations example, in order to check the correlation with the synaptic matrix of

the ν-th pattern generated from µ-th prototype, we use:

gµν(t) =
1

f 2N(N − 1)

∑
i 6=j

Jij(t)η
µν
i η

µν
j = P (Jij(t) = 1|ηµνi = 1, ηµνj = 1) (4.15)

and so on for any other memory. In general any synaptic configuration arises from

the specific temporal arrangement of memories previously imposed to the network.

If, for example, the network sees a pattern belonging to µ− th class, memory traces

of class members and, of course, of the prototype will get stronger, while traces of

other classes memories will not. Any attempt to approximate and model the dy-

namic behaviour of such system is therefore destined to suffer from some grade of

inaccuracy.

But since we are interested in the mean properties and response of the system, to

avoid this issue we adopt the point of view expressed in Brunel et al. (1998), who

noted that, in the slow learning limit (q+ = 0), averaging over all possible realiza-

tions of a sequence gives a good approximation of the synaptic matrix’s behaviour

when presented with a typical succession of patterns. Variability from sequence to

sequence goes to zero when q+ → 0. Each sequence in (4.13) comprises p presenta-

tions of patterns chosen by picking out a prototype at random and then generating

a noisy version of it. One class is represented, on average, only once per sequence.

This convention is similar to the protocol used in visual memory experiments by

Miyashita (1988). Still, as in the uncorrelated context previously described, any

presentation causes a pool of stochastic transitions in the synaptic efficacies. The

subsequent markovian stochastic process for a single synaptic efficacy Jij is depicted
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by a matrix similar to (4.3), where elements are the transition probabilities averaged

over all possible sequences:

〈Mij〉 =

 1− 〈αij〉 〈αij〉

〈βij〉 1− 〈βij〉


〈αij〉 =

q−

p

p∑
µ=1

[ηµνi (1− ηµνj ) + ηµνj (1− ηµνi )]

〈βij〉 =
q+

p

p∑
µ=1

ηµνi η
µν
j

Recalling eq. (4.6), we deduce that the expression for the steady state distribution

is simply

gµ∞ =
1

f 2N(N − 1)

∑
i 6=j

〈βij〉
〈αij〉+ 〈βij〉

defining

Pij ≡
p∑

µ=1

ηµνi η
µν
j

Dij ≡
p∑

µ=1

[ηµνi (1− ηµνj ) + ηµνj (1− ηµνi )]

we obtain for the asymptotic distribution

gµ∞ =
1

f 2N(N − 1)

∑
i 6=j

q+Pij
q+Pij + q−Dij

(4.16)

Now that we have averaged the efficacy of each single synapse over all possible

sequences, we can carry out the mean field approximation (Parisi, 1988) by replacing

the elements of the sum over all synapses by their average, denoted by double
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brackets 〈〈·〉〉:

gµ∞ =

〈〈
q+Pij

q+Pij + q−Dij

〉〉
A generic input sequence consists, on average, in one pattern belonging to the

desired class (µ) and (p− 1) patterns residing in other families. In the former case,

synapses will connect a pair of active neurons with probability u, and will therefore

experience potentiation with probability q+u. Similarly depression will occurr with

probability q−2u(1 − u), i.e. the chance of finding a firing neuron connected to a

silent one times the synaptic depression probability.

Instead, since there is no correlation among classes, when we show a pattern that

belongs to a different family we have that:

• if a synapse belongs to the particular subset in the {i, j} space where ηµi η
µ
j = 1

(which happens with probability f 2), then it will be potentiated with proba-

bility q+u
2 or depressed with probability q−2u(1− u);

• instead, if it belongs to the subset ηµi (1−ηµj ) +ηµj (1−ηµi ) = 1, that comprises,

on average, a fraction 2f(1−f) of all the synapses, it will be potentiated with

probability q+u(1− v) and depressed with probability q−[uv + (1− u)(1− v)]

• if a synapse belongs to the last subset, ηµi = 0, ηµj = 0 (with probability

(1−f)2), it ends up being potentiated with probability q+(1−v)2 or depressed

with probability q−2v(1− v);

Putting all different subsets together and adding the contribution of the intra-class
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memory, we can rewrite (4.16) in the form:

gµ∞ =
1

f 2N(N − 1)

∑
i 6=j

q+Pij
q+Pij + q−Dij

ηµi η
µ
j =

=

p−1∑
Π=0

p−1−Π∑
∆=0

ψ+(Π,∆) q+

(
u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)

)
×

×
(
q−[2u(1− u)(Π + 1) + (uv + (1− u)(1− v))∆ + 2v(1− v)(p− 1− Π−∆)]

+ q+[u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)]

)−1

=

=

p−1∑
Π=0

p−1−Π∑
∆=0

ψ+(Π,∆) Aµ∞(Π,∆)

the sum is over (p−1) patterns reflecting the fact that the network sees a member of

the µ-th class with probability 1/p, meaning that the pool of synapses matching the

condition ηµi η
µ
j = 1 is potentiated at least once in the sequence with probability q+u

2

and depressed with probability q−2u(1− u). The trinomial probability distribution

ψ+(Π,∆) =
(p− 1)!

Π!∆!(p− 1− Π−∆)!
[f 2]Π [2f(1− f)]∆ [(1− f)2](p−1−Π−∆)

gives the joint probability P (Pij = Π, Dij = ∆).

If we include the full time dependency, the distribution may be rewritten as

gµ(t) =

p−1∑
Π=0

p−1−Π∑
∆=0

ψ+(Π,∆)

(
Aµ∞(Π,∆)

(
1− 〈λµ(Π,∆)〉t

)
+ c〈λµ(Π,∆)〉t

)

and the subdominant eigenvalue as

〈λµ(Π,∆)〉 = 1− q+

p

(
u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)

)
+

− q−
p

(
2u(1− u)(Π + 1) + [uv + (1− u)(1− v)]∆ + 2v(1− v)(p− 1− Π−∆)

)
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where 〈λµ(Π,∆)〉 is the sequence-averaged dominating eigenvalue of the Markov

chain, and c is the initial distribution of potentiated synapses.

Things get more complicated when we look at the son, since nontrivial correla-

tions between class members cause the formation of three different pools of synapses

B, C and D that experience potentiation and depression with peculiar statistics:

gµν∞ =
1

f 2N(N − 1)

∑
i 6=j

q+Pij
q+Pij + q−Dij

ηµνi η
µν
j

=

p−1∑
Π=0

p−1−Π∑
∆=0

ψ+(Π,∆)

(
Bµν∞ (Π,∆) + Cµν∞ (Π,∆) +Dµν∞ (Π,∆)

)

where:

Bµν∞ (Π,∆) = u2 q+

(
u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)

)
×

×
(
q−[2u(1− u)(Π + 1) + (uv + (1− u)(1− v))∆ + 2v(1− v)(p− 1− Π−∆)]

+ q+[u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)]

)−1

Cµν∞ (Π,∆) =
2f(1− f)u(1− v)

f 2
q+

(
u2Π+u(1−v)(∆+1)+(1−v)2(p−1−Π−∆)

)
×

×
(
q−[2u(1− u)Π + (uv + (1− u)(1− v))(∆ + 1) + 2v(1− v)(p− 1− Π−∆)]

+ q+[u2Π + u(1− v)(∆ + 1) + (1− v)2(p− 1− Π−∆)]

)−1

Dµν∞ (Π,∆) =
(1− f)2(1− v)2

f 2
q+

(
u2Π + u(1− v)∆ + (1− v)2(p− Π−∆)

)
×

×
(
q−[2u(1− u)Π + (uv + (1− u)(1− v))∆ + 2v(1− v)(p− Π−∆)]

+ q+[u2Π + u(1− v)∆ + (1− v)2(p− Π−∆)]

)−1
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As a function of time, starting from arbitrary initial conditions:

gµν(t) =

p−1∑
Π=0

p−1−Π∑
∆=0

ψ+(Π,∆)

(
Bµ∞(Π,∆)

(
1− 〈λµ(Π,∆)〉tB

)
+

+ Cµ∞(Π,∆)
(
1− 〈λµ(Π,∆)〉tC

)
+Dµ∞(Π,∆)

(
1− 〈λµ(Π,∆)〉tD

)
+

+
c

f 2

(
f 2u2〈λµ(Π,∆)〉tB + 2f(1− f)u(1− v)〈λµ(Π,∆)〉tC+

+ (1− f)2(1− v)2〈λµ(Π,∆)〉tD
))

where each set of synapses is associated with a peculiar eigenvalue:

〈λµν(Π,∆)〉B = 1− q+

p

(
u2(Π + 1) + u(1− v)∆ + (1− v)2(p− 1− Π−∆)

)
+

− q−
p

(
2u(1− u)(Π + 1) + [uv + (1− u)(1− v)]∆ + 2v(1− v)(p− 1− Π−∆)

)

〈λµν(Π,∆)〉C = 1− q+

p

(
u2Π + u(1− v)(∆ + 1) + (1− v)2(p− 1− Π−∆)

)
+

− q−
p

(
2u(1− u)Π + [uv + (1− u)(1− v)](∆ + 1) + 2v(1− v)(p− 1− Π−∆)

)

〈λµν(Π,∆)〉D = 1− q+

p

(
u2Π + u(1− v)∆ + (1− v)2(p− Π−∆)

)
+

− q−
p

(
2u(1− u)Π + [uv + (1− u)(1− v)]∆ + 2v(1− v)(p− Π−∆)

)

The formulas we have just derived are undoubtedly difficult to calculate, since

the amount of terms inside each sum grows exponentially with the total number of

patterns, and hard to read intuitively, for they are a non linear miscellany of several

parameters. The exact solution can still be handled by a calculator if the number

of classes is not high, namely less than 500. The parameters involved are:

• coding level f , that is the fraction of neurons activated on average by each
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memory input.

• pattern similarity m, that controls correlations between layers inside the pat-

tern hierarchy.

• synaptic transition probabiities. We use the same tuning as in the random

case, to force the network towards an overall balance between number of po-

tentiating and depressing events: q+ = q q− =
qf

2(1− f)
.

• total number of classes p, determining the richness of the external input re-

ceived by the network.

Is there a set of parameters that allows the system to learn a prototype better

than any of the class members? Note that we never show a prototype to the network,

which means that learning must take place exclusively through correlations with

class members.

To address this question we let the network reach the equilibrium distribution (i.e.

when it has seen a sufficient number of patterns belonging to our hierarchy, according

to the statistics previously introduced in this section), then, at time t∗, we impose

a generic pattern belonging to class µ. Obviously, the son with the highest signal is

the one that has been just presented, so we will look at the conditional distributions

gµ(t∗) = gµ∞
(
1− q−2u(1− u)

)
+ (1− gµ∞)q+u

2

gµν(t∗) = gµν∞ + (1− gµ∞)q+

to see if, for a given value of m and q

gµ(t∗) > gµν(t∗)

In Fig. 4.4 we show the results of simulations in three configurations of parameters
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m and q, while we keep fixed f = 0.05 and p = 100. Simulations are carried out in

a network of N = 1000 binary neurons with no intrinsic dynamics, and are obtained

averaging over 50 trials. In Fig. 4.4A is displayed what we have called the poorly

correlated sons regime, where low correlations (m = 0.1), irrespective of learning

speed, prevent the prototype from being effectually stored. The strongly correlated
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Figure 4.4: (a) Poorly Correlated Sons regime: correlations are too scarce to create
a representation of the father; B. Strongly Correlated Sons regime: memory traces are
strong and close together because of the high correlations, class members prevail at the
time of their presentation; C. Dominating Father regime: the father trace is stronger than
sons’ signal when correlations and slow learning occur.
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Figure 4.5: gµ(t∗)− gµν(t∗) as a function of two parameters, similarity m and synaptic
transition probability q, for different number of classes: (a) p = 50; (b) p = 100; (c)
p = 200. As p grows the red area, corresponding to the dominating father regime,
becomes smaller, reflecting the higher probability of overlap beetween patterns belonging
to different classes. In all figures f = 0.05.

sons regime (see Fig. 4.4B) represents a situation where similarity amid patterns

is high enough and the learning rate is extremely fast (m = 0.7, q = 0.9); the

son’s memory trace stays much above his father’s trace at the very moment of his

presentation, even though it is asymptotically overcome by the prototype signal.

The last and most interesting regime is shown in Fig. 4.4C: here patterns are quite

correlated but learning speed is low (m = 0.6, q = 0.2), so that any imposed pattern

is learned less effectively at the moment of the presentation, while the features of

the prototypical pattern can still be stored. The agreement between simulations

and mean field approximation is excellent, considering the relatively small size of

our network. Extensive simulations have been performed with parameters f , m, and

q ranging from 0 to 1, while the number of families varied between 10 and 500. In

Fig. 4.5 and Fig. 4.6 we the two dimensional diagrams reporting the value of the

difference gµ(t∗)− gµν(t∗) as a function of similarity and transition probability. For

a given statistics in the input (i.e. a certain value of m), there could exist different

networks with distinct synaptic transition probabilities that would allow the storage

of the father or the sons respectively. The dominating father regime progressively
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shrinks, eventually collapsing towards the q = 0 line, when p and f grow. In fact,

a higher coding level translates in a higher overlap between uncorrelated patterns

(i.e. belonging to different classes). The positive effect due to correlations is then

counterbalanced by the higher average noise provoked by the learning of memories

from other families. Similarly, breeding a higher number of families not only causes

an increase in overlap probability but also extends the average time separating the

presentations of two patterns from the same family.

4.2.2 Storing the difference

In the last section we have found a subset in the parameters’ space for which the

memory trace of a prototype prevails against every class member. A first implication

of this result is that the network is able to generalize the representation of any group

of correlated inputs when properly tuned. At the end of the learning process, any

“noisy” pattern shown to the network elicits a stronger signal in the prototype

representation than in its own. A second very important implication would be that,

if we have a network capable of storing the prototype, we can imagine a second

network, differently tuned, capable of storing the differences between the incoming

queue of inputs (i.e., the class members) and the prototype. In other words we build

a first network that keeps track of the features common to some groups of patterns,

and then some connecting scheme that receives the actual input and matches it

with the activity of the first network, keeping only the unmatching portion of each

input pattern (i.e. the “noisy” part). A second network receives these differences in

input and stores them as memories (see Fig. 4.7). Why storing differences instead

of the whole original memories? We have seen in the random and uncorrelated case

that the total storage capacity is proportional to f−2. Reducing the coding size is

therefore crucial for extending memory lifetime, and this is what happens if we store
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Figure 4.6: gµ(t∗)− gµν(t∗) as a function of m and q, for different coding sizes. When
f grows the red area, corresponding to the dominating father regime, becomes smaller,
reflecting the higher probability of overlap beetween patterns belonging to different classes.
p = 100.

differencies, in fact the coding level of a difference pattern is on average

fd = 2f(1− f)(1−m)

where f is the coding level of the original memories. For any m >
1− 2f

2(1− f)
we have

that fd < f . Since we assume a small f , this condition is easily satisfied. Moreover,
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(a) (b)

Figure 4.7: (a) Schematic representation of two interacting networks: the first, in red,
stores the father ηµ with the procedure described in Section 4.2.1; a second network,
in yellow, receives both the instantaneous input stream (in blue) and the activity of the
first network. (b) Taking the simple difference in this binary framework is equivalent
to the boolean exclusive or, that we assume is performed somewhere in the connecting
unit. Black (white)segments represent active (quiescent) neurons. In this work we do not
investigate further any detailed underlying biological mechanism.

the correlations beetween differences of patterns belonging to the same class go to

zero as f → 0 or m→ 1:

E[ξ1
i ξ

2
i ]− E[ξ1

i ]E[ξ2
i ] = f(1− u)2 + (1− f)(1− v)2 − f 2

d =

= f(1− f)(1−m)2
(
1− 4f(1− f)

)
−−−−−−→
f→0, m→1

0

In this limit all the calculations made in Section 4.1 for uncorrelated random patterns

are valid, we simply need to replace f with fd, the new coding level, and tune

transition probabilities in the proper way to obtain the correct ratio of potentiating

and depressing transitions:

q+ = q q− =
qfd

2(1− fd)

Chosen the network parameters, memory lifetime of a stored difference is, recalling

eq. (4.10):
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Figure 4.8: Memory trace of a pattern build taking the difference between a class member
and the class prototype. Parameters are: N = 1000, p = 50, f = 0.1, m = 0.7, q = 0.3,
simulations have been launched for 50 trials with random initialization of the synaptic
matrix (P (Jij(0) = 1) = 0.5) . When the son is presented to the original network
(t∗ = 1200), the trace of its difference, shown to the XOR network, is also strengthened.
Then the conditional distribution progressively decays to a value close to 0.5, as in the
totally uncorrelated case. The dotted line represents the exponential fit from which we
obtain τ simd = 578 unit time, compared to a theoretical prediction of τ thd = 571.5 u.t..

τd = (2f 2
d q)
−1 =

(
8f 2(1− f)2(1−m)2q

)−1
(4.17)

from which we see that bringing more correlated inputs (high m) boosts the ca-

pacity by reducing coding level fd. To check the goodness of this prediction we

have performed several simulations of this protocol. In particular, an example of

the memory trace stored by this network is given in Fig 4.8 for p = 50, f = 0.1

and m = 0.7. In this case correlations between stored patterns are low, since the

equilibrium distribution gd∞ is slightly higher than 0.5, i.e. the value we obtained

in the uncorrelated frame. The lifetime τd is obtained from simulation through an

exponential fit (the dotted line in Fig. 4.8) of the curve with the time evolution of

conditional probability:
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Figure 4.9: Memory lifetime τd vs. similarity parameter m. Continous light blue line
represents the result obtained from the exponential fit (see eq. 4.18). Dotted blue line
shows theoretical prediction.

gd(t) = gd∞ + (1− gd∞)q exp(−t/τd) (4.18)

In Fig. 4.9 we compare the theoretical prediction of eq. (4.17) with the value

produced by the fit: the agreement is excellent, confirming that in the limit of small

f correlations between difference patterns go to zero.

The advantage in terms of capacity deriving from the storage of the differences

becomes substantial when the value of m approaches one, but, of course, there must

be a drawback in terms of initial signal to noise ratio. In fact, as explained in Section

4.1, a decrease in the coding size would extend memory lifetime but would diminish

the initial SNR, since

S0

N0

≈
√
fN

Thus, if we want to compare the capacity of a network storing a stream of uncorre-

lated single memories with one that receives a structured input, and memorizes the

differences with the prototypes, we want both to start from the same initial SNR.

Coding level is fixed, since it is a peculiar feature of the set of memories. Thus, the

parameter we need to adjust is the synaptic transition probability q, the only free

parameter left. Taking the usual limit (f → 0, N →∞, fN →∞) the expressions
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of the initial SNRs are

S0

N0

=
√
fN

1

2
q

2

√
1

4
(1 + q)2 +

qf

64
(1− q)2 − f

(1

2
(1 + q)

)2

(4.19)

Sd0
N d

0

=
√
fdN

1

2
qd

2

√
1

4
(1 + qd)2 +

qdfd
64

(1− qd)2 − fd
(1

2
(1 + qd)

)2

where we have approximated the conditional probabilities to the uncorrelated case:

gd∞ =
1

2
γd0 =

1

4
(1 + qd)

2 +
qdfd
64

(1 + qd)
2 +O(f 2

d )

Neglecting terms of order f or fd inside the denominators of eq. (4.19) and equating

the two expressions, after some algebra we obtain:

qd =

√
f q√

fd (1 + q)−
√
f q

(4.20)

This way we have balanced the learning speed of the two networks to get the same

initial SNR. In eq. (4.9) we have seen that the decay time τ is a measure of the

network storage capacity, especially on equal starting SNR. Hence, we can measure

the capacity gain by looking at the ratio of the decay times, that grows as

τd
τ

=

√
2(1− f)(1−m)(1 + q)− q

4(1− f)2(1−m)2
(4.21)

The ratio reaches its maximum for

mmax = 1−
8q2

9(1− f)(1 + q)2
≈ 1−O(q2)

Therefore, for m not too close to one and small q the advantage in terms of network
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Figure 4.10: Signal-to-noise ratios of memories learned in two networks receiving different
sets of memories. Blue line: uncorrelated patterns. Green line: differences between
class members and prototypes imposed to a properly tuned network. In this simulation:
N = 1000, f = 0.1, q = 0.16, m = 0.9, fd = 0.1, qd = 0.5, Trials= 100.

capacity scales like

τd
τ
≈ (1−m)−3/2

In Fig. 4.10 we exhibit the simulations of the two network settings. The blue

line reproduces the SNR of a generic memory, when the input consists of a set

of uncorrelated, randomly selected patterns. The tracked pattern is shown to the

network at t = 0 and then erased upon the learning of new memories. Coding level

is f = 0.1 and the learning rate is low: q = 0.16, slowing down the progressive

decay of the SNR. The green trace, instead, corresponds to the SNR of a difference

pattern, in the context of a two generations hierarchical structure of the input. The
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coding size of the original patterns is equal to the uncorrelated situation (f = 0.1),

but the similarity parameter is set to m = 0.9. This determines the average coding

level of the difference patterns fd ≡ 2f(1− f)(1−m) = 0.018, and, in consequence,

the learning rate of the XOR network: qd ≈ 0.5. The resulting difference in memory

lifetime is clear by looking at Fig. 4.10, however we have fitted the curves with two

exponential functions of the form of eq. (4.8), obtaining3

τ = 310 u.t. τd = 3142 u.t.

The storage capacity gain is then

τ

τd
= 10.1

that is slightly less than the value calculated from eq. (4.21):

τ thd
τ th
≈ 10.2

4.2.3 Three generations

The previous scheme can be extended to complex nested hierarchies, containing

three or more generations. So, for example, one could imagine an ultrametric tree

representing a subsumptive hierarchy of objects, i.e. where the first branching nodes

correspond to general categories and subsequent branches to more specific ones, as

in the example of Fig. 4.11.

A generic three generations input structure is reported in Fig. 4.12, organized in the

usual ultrametric tree scheme. The pattern set is built by generatinf p1 uncorrelated

grandfathers from distribution (4.1), and then p2 fathers employing the same scheme

3Indeed the values extracted from the simulations are remarkably close to the theoretical
results, predicted respectively by eq. (4.10) and eq. (4.17): τ th = 312 u.t. τ thd = 3086 u.t.
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described in the two generations section. We will refer to the similarity parameter

between grandfathers and fathers as m1. From each of the second layer patterns we

generate new sons according to equations

P (ηµνσi = 1|ηµνi = 1) ≡ r = 1− (1− f)(1−m2)

P (ηµνσi = 0|ηµνi = 0) ≡ s = 1− f(1−m2)

that are simply an extension of eqs. (4.12).

Our goal is to find a first set of parameters that would permit the retrieval of the

grandfather, a second one that would lead to the recall of the father, and a third

that would favour the son attractor. In other words, we wish to build a network that

is able to learn and memorize patterns belonging to any level of the hierarchy, just

by varying the synaptic transition probability q, given that f and m are peculiar

properties of the stimuli and are therefore fixed.Arbre phylogénétique de la vie
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Figure 4.11: Simplified phylogenetic tree of living organisms, showing the evolutionary
relationship between taxonomic groups. Each node represents a common ancestor for the
descendants, located at the end of each branch.
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Figure 4.12: Three generations hierarchy of memories.

In order to achieve our target, we proceed by following the procedure used for

the two generations case. We shuffle the presentation order of stimuli by choosing

a particular grandfather with probability 1/p1, then we pick one of the fathers

descending from the chosen grandfather with probability 1/p2, and, at last, we

generate a new son from this very father. In this way we never present the same

pattern twice and we can average over the sequences as we did before. The typical

sequence consists of p1 patterns constructed by corrupting one of the p1 · p2 fathers

chosen at random. Due to the mixed correlations between subclasses, the mean

fields equations are more complex than the two generations protocol, and give rise

to very long and time-consuming expressions. The expression for the grandfather

would be

P
(
Jij(∞) = 1

)
≡ g∞ =

p1∑
Π=0

p1−Π∑
∆=0

ψ(Π,∆)

Πp2∑
π1=0

Πp2−π1∑
δ1=0

φ1(π1, δ1)

∆p2∑
π2=0

∆p2−π2∑
δ2=0

φ2(π2, δ2)×

×
(p1−Π−∆)p2∑

π3=0

(p1−Π−∆)p2−π3∑
δ3=0

φ3(π3, δ3)

(
β(π1, π2, π3, δ1, δ2, δ3)

β(π1, π2, π3, δ1, δ2, δ3) + α(π1, π2, π3, δ1, δ2, δ3)

)
(4.22)
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β(π1, π2, π3, δ1, δ2, δ3) = q+

(
r2(π1 + π2 + π3) + r(1− s)(δ1 + δ2 + δ3)+

+ (1− s)2(3p2 − π1 − π2 − π3 − δ1 − δ2 − δ3)
)

α(π1, π2, π3, δ1, δ2, δ3) = q−

(
2r(1− r)(π1 + π2 + π3) + (rs+ (1− s)(1− r))×

× (δ1 + δ2 + δ3) + 2s(1− s)(3p2 − π1 − π2 − π3 − δ1 − δ2 − δ3)
)

where the following are the probability distributions:

ψ(Π,∆) =
p1!

Π!∆!(p1 − Π−∆)!
[f 2]Π [2f(1− f)]∆ [(1− f)2](p1−Π−∆)

φ1(π1, δ1) =
Πp2!

π1!δ1!(Πp2 − π1 − δ1)!
[u2]π1 [2u(1− u)]δ1 [(1− u)2](Πp2−π1−δ1)

φ2(π2, δ2) =
∆p2!

π2!δ2!(∆p2 − π2 − δ2)!
[u(1− v)]π2 [uv + (1− u)(1− v)]δ2×

× [(1− v)2](∆p2−π2−δ2)

φ3(π3, δ3) =
((p1 − Π−∆)p2)!

π3!δ3!((p1 − Π−∆)p2 − π3 − δ3)!
[(1− v)2]π3 [2v(1− v)]δ3×

× [v2]

(
(p1−Π−∆)p2−π3−δ3

)

The sums count the number of distinct submatrices, each experiencing a different

sequence of potentiating or depressing events inside the synaptic matrix. This num-

ber grows exponentially with the total number of branches (ptot = p1 · p2), leading

to very long calculation times. In order to reduce the number of factors inside the

sums and, consequently, reduce the time for simulations, we need to find an approx-

imation for expression (4.22).

When p2 is large and bigger than p1, the average number of potentiating, depressing

or neutral events is given by the mean of distributions φ1, φ2, φ3. For example, the
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vector of the averages for φ1 is

~µ1 = Π p2


u2

2u(1− u)

(1− u)2


Fluctuations around these means, i.e. the square root of the variances, are propor-

tional to
√
p2, therefore in the limit p2 � 0 we can replace φ1, φ2, φ3 with their

means. Conceptually, this corresponds to generating always new stimuli directly

from the grandfather with conditional probabilities

P (ηµνσi = 1|ηµi = 1) ≡ U = ur + (1− u)(1− s) = 1− (1− f)(1−m1m2)

P (ηµνσi = 0|ηµi = 0) ≡ V = (1− v)(1− r) + vs = 1− f(1−m1m2)

Eq. (4.22) may be rewritten as

g∞ =

p1∑
Π=0

p1−Π∑
∆=0

ψ(Π,∆)
B(Π,∆)

B(Π,∆) + A(Π,∆)
(4.23)

B(Π,∆) = q+

(
U2Π + U(1− V )∆ + (1− V )2(p1 − Π−∆)

)
A(Π,∆) = q−

(
2U(1− U)Π + [UV + (1− U)(1− V )]∆ + 2(1− V )V (p1 − Π−∆)

)
that clearly leads to a significant reduction in the number of factors inside the sums.

Following the same procedure, we can obtain approximated expression for gµ, gµν

and gµνσ. The overlap value of the generic grandfather is primarily influenced by the

fact that, with probability 1/p1, the network sees a member of µ class correlated with

the grandfather. At the same time, though, there are other correlations acting on

the network that also shape the synaptic matrix. Those are intra-class correlations



4.2 Correlated memories 89

between members of other families (recall that there is no inter-family correlation).

The average time separating the presentations of two patterns belonging to the same

class is of order ∆t1 ∼ p1, while it is of order ∆t2 ∼ ptot for intra-subclass memories.

For p2 > p1 � 0 we can apply the approximation as in (4.23), keeping aside the

contributions of all patterns belonging to the cluster of interest (µ). The grandfather

signal is

gµ∞ =

p1−1∑
Π=0

p1−1−Π∑
∆=0

ψ+(Π,∆)

p2∑
π=0

p2−π∑
δ=0

φ1(π, δ)

(
β(π, δ) + B(Π,∆)

β(π, δ) + B(Π,∆) + α(π, δ) + A(Π,∆)

)

β(π, δ) = q+

(
r2π + r(1− s)δ + (1− s)2(p2 − π − δ)

p2

)
α(π, δ) = q−

(
2r(1− r)π + (rs+ (1− s)(1− r))δ + 2s(1− s)(p2 − π − δ)

p2

)
B(Π,∆) = q+

(
U2Π + U(1− V )∆ + (1− V )2(p1 − 1− Π−∆)

)
A(Π,∆) = q−

(
2U(1− U)Π + (UV + (1− V )(1− U))∆ + 2V (1− V )(p1 − 1− Π−∆)

)

ψ+(Π,∆) =
(p1 − 1)!

Π!∆!(p1 − 1− Π−∆)!
[f 2]Π [2f(1− f)]∆ [(1− f)2](p1−1−Π−∆)

φ1(π, δ) =
p2!

π!δ!(p2 − π − δ)!
[u2]π [2u(1− u)]δ [(1− u)2](p2−π−δ)

Factors α and β express the contributions of family µ, while A and B are the approx-

imations for the synaptic transitions provoked by all other families (uncorrelated to

the µ-th one). The complete result for the second and the third stages of the hierar-

chy are exposed in Appendix B. For low values of p2, the approximated expressions

do not exactly reproduce the result of simulations, but are nevertheless qualitatively

correct, i.e. the dominant memory trce is correctly predicted. This allows us to use

this approximation for exploring the network parameters space. We wanted to know
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(c) p1 = 20 p2 = 20, f = 0.02, m2 = m
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(d) p1 = 10 p2 = 50, f = 0.02, m2 =
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Figure 4.13: Regions of the space spanned by parameters m and q+ are colored according
to the prevailing pattern: red for grandfather, light blue for the father, dark blue for the
son. (a): the similarity parameter is the same for all layers; (b): m2 > m1 and the area
corresponding to the father layer is larger; (c): when p2 ≈ p1 the father region disappears
completely (obtained from pure simulations); (d): increasing p2 reduces the dominating
father area like in (a).

which pattern is predominant (i.e. has the strongest memory trace in the network)

within a certain set of parameters. Examples of the results are displayed in Fig.

4.13. Like the two generations case, there is a red region where the prototype (the

grandfather) dominates, due to the high correlations with the presented stimuli, and

a dark blue region where the stimulus presented last (the son) prevails. However,

if the coding level is small (low probability of interference between patterns) it ap-

pears a light blue spot, which indicates that the father overcomes the other two.
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This happens when m is not too high, so that the grandfather is not very much

correlated with the sons, and q+ is small, that is current stimulus does not predom-

inate. Hence, as expected, when m2 > m1 the light blue spot expands, since the

father is on average more correlated with the stimuli than the grandfather. Instead,

the grandfather is more likely to dominate again when p2 is very large, since the

probability that the network sees a stimulus belonging to the father’s subcluster is

only 1/p1p2, while the grandfather trace is strengthened with probability 1/p1.

Although we still need to perform a complete analysis of the results, it is indeed

clear that the parameter space consists of three areas, one for each level of the

ultrametric tree. We can therefore build three distinct networks, that memorize

patterns at different stages of the hierarchy starting from exactly the same ensemble

of input patterns.

As we did with a two layers hierarchy, we tested the possibility of learning the

differences between the stimulus that is presently being shown to the network and

the cluster or subcluster prototype. The capacity of a network K that learns the

father-son differences is proportional to ≈
(
8 q f 2(1− f)2(1−m2)2

)−1
. The gain is

progressively less effective climbing up the hierarchy: if, for example, we introduce

a network L capable of storing the grandfather-son difference, we gain a factor

≈ (1 −m1m2)−2 in the memory storage capacity. Since m1 is always smaller than

one

(1−m1m2)−2 < (1−m)−2 (4.24)

and thus

τK > τL (4.25)



Chapter 5

Conclusions and future directions

In this dissertation we have explored the dynamic behaviour of associative recurrent

networks with binary neurons and bistable synapses. The model is simple enough to

be handled with the mathematical formalism of stochastic processes, but it indeed

preserves many important features of real neuronal circuits, as described in Chap-

ters 2 and 3, and it is therefore suitable even for future, more biologically oriented

implementations. We measured the performance of the network in terms of mem-

ory capacity, when it is presented with either an uncorrelated random stream of

input (for which we have also calculated the signal-to-noise ratio), or a structured,

ultrametrically correlated hierarchy of stimuli. In the latter case, intrinsic network

parameter q, that regulates the learning speed, may be slowed down so that the

attractor of the network dynamics is a pattern representing the average of an en-

semble of correlated patterns (categories), among which lies the currently presented

stimulus.

Afterwards, we have verified that the maximum number of stored patterns increases

92
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considerably when, instead of storing the whole patterns, the network memorizes

only the bits that are uncorrelated with the average features of the class they be-

long to. Indeed, it is important to keep the prototype pattern stored in a separate

network, for later retrieval of the original stimulus.

By extending this results to larger and more complex hierarchies, one could store

memories representing the difference between patterns laying at higher levels of the

hierarchy and the stimulus that is being shown to the network. For example, if

we imagine to store the difference between current stimulus and one of its subclass

prototypes, distant k steps in the ultrametric tree, we gain a factor ≈ (1−mk)−2 in

terms of memory capacity (supposing that the similarity parameter m is the same

at all stages). However, in order to memorize the whole hierarchy, we would need

a network for each stage, which is not very convenient from a biological point of

view. It could be the case, instead, that only the very first parent is stored, and the

remaining subclasses are somehow reconstructed using that prototypical pattern as

a reference. This way we can avoid the proliferation of subnetworks, which, indeed,

does not seem to be biologically and evolutionary reasonable.

Evidences of categorization have been found all over the brain. Our model could

be useful for describing the consolidation of short-term memories (the input pat-

terns) to long-term memories (the class or subclass prototypes) in the hippocampus

(Marr, 1971; Rolls, 1990). Before making any experimental prediction, however, we

need to further analyse the material presented in this thesis. The complete model

will be presented in a publication article that is currently being edited.

Still, there are many interesting questions and ideas regarding this work. First, our

model is still far from real experimental protocols, an aspect that does not allow

us to make strong predictions. Hence, in future studies, we hope to introduce more

biological realism, for example embodying single neuron dynamics, in theoretical



94

modelling. Second, we still need to find a plausible mechanism that actually per-

forms the difference between prototypes and class members. Given the huge number

of connections in the brain, we suggest the implementation of random projections

with a sparse matrix. This technique consists in projecting any set of points or vec-

tors, lying in the N -dimensional space, to a randomly chosen M -dimensional space.

M is independent on N and must be at least logarithmic in the size of the vector

set.

In our case vectors represent the patterns of activity of the ANN which stores a

cluster or subcluster prototype, and the flow of external stimuli. These vectors are

multiplied by a N ×M random matrix (where each entry is drawn independently

from, for example, a gaussian distribution with zero mean and unitary variance) to

obtain a projection in the M -dimensional space. A rather famous lemma by Johnson

and Lindenstrauss (1984) guarantees that all pairwise distances among vectors (and

hence similarities and differences between activity patterns) are maintained within

an arbitrarily small factor. In particular, input patterns that are similar enough to

let the recurrent network relax into the same attractor, will most likely have the

same behavior in the projected network. The only difference is that all distances

between patterns of neural activities would be stretched on average by some com-

mon factor.

A similar and possibly more appealing way of projecting the signal from the first

to the second network should involve Compressed Sensing theory, a recent signal

reconstruction theory developed by E. Candes, D. Donoho, J. Romberg, T. Tao and

M. Wakin. Compressed Sensing (CS) exploits the fact that many interesting signals

possess a structure which renders them very sparse when represented in the proper

basis. While classical information theory would encode these signals by sampling at

a rate above the Nyquist-Shannon criterion to subsequently compress the signal, CS
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proceeds by directly sampling the signal at a low rate by projecting it onto a basis

which is maximally incoherent with respect to the natural sparse basis of the signal,

in order to obtain a representation which is already compressed. This allows high-

resolution acquisition with low-resolution sensors. CS works because, if there exists

a basis in which the signal is sparse, then the product of an incoherent sensing matrix

with the matrix of basis vectors is roughly orthogonal when restricted to the space

of sparse signals (Candes and Tao, 2005). Since orthogonal means invertible, the

signal can be (almost) exactly reconstructed. The reconstruction technique doesn’t

involve inversion, though, but rather a minimization extremizing the sparseness of

the signal. Since it does not imply any intelligent strategy, it would be interesting

to look whether CS (or random projections theory) may be useful for our purposes.

Third, and last, our model presents some rather impressive analogies with bayesian

models of category learning (Sanborn et al., 2006) that are widely used in Machine

Learning and Artificial Intelligence fields. We look forward to integrating some con-

cepts and ideas borrowed from Bayesian statistics into our model, in the hope that

we could contribute again to the understanding of memory and learning processes.



Appendix A

Floating Coding Level

A.1 Signal

Inside Section 4.1.1 we defined normalized signal as

Sn(t) = E

[
1

f 2N(N − 1)

∑
i 6=j

Jij(t)η
µ
i η

µ
j

]

The normalization coefficient comes from the statistics of the input pattern, as we

will show in the following. Let us start with the unnormalized signal, i.e. the

expectation value of the overlap between a memory and the synaptic matrix:

S(t) = E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]

When taking the expectation value we have to be careful that the number of active

neurons per pattern is equal to fN only on average, since it fluctuates with standard

deviation f(1− f)N . To take into account this feature we notice that, if stochastic

96



A.1 Signal 97

variables X and Y live in the same probability space and , we can write

E[X] = E
(
E[X|Y ]

)
if X and Y run respectively over the sets of values {x} and {y}:

E
(
E[X|Y ]

)
=
∑
y

E[X|y] P (Y = y) =
∑
y

(∑
x

x P (X = x|y)

)
P (Y = y)

thus, conditioning our observable
∑
i 6=j

Jij(t)η
µ
i η

µ
j ≡ X on the number of active neu-

rons in tracked memory, which is itself a stochastic variable
∑
a

ηµa ≡ Y with average

fN , and variance f(1− f)N , we get

E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
= E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])
=

= P (Jij(t) = 1|ηµi = 1, ηµj = 1)
N∑
y=0

(y2 − y)P
(∑

a

ηµa = y
)

where the term inside the sum is simply the average number of synapses having

value J = 1 at time t, given that the effective coding level of pattern µ is
y

N
. In

our simulations memories consist of N bits, each of which is taken to be one with

probability f or zero with probability (1 − f). Consequently, the number of active

units in the tracked memory
∑

a η
µ
a follows the binomial distribution

P
( N∑
a=1

ηµa = y
)

=
N !

y!(N − y)!
f y(1− f)N−y
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The first two moments around zero of this probability distribution are

M(1) =
N∑
y=0

yP
( N∑
a=1

ηµa = y
)

= fN

M(2) =
N∑
y=0

y2P
( N∑
a=1

ηµa = y
)

= f 2N2 + f(1− f)N

the unnormalized signal is then a combination of these two moments times the

conditional probability gµ(t) introduced in Section 4.1.1:

E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
= gµ(t)

(
M(2) −M(1)

)
= gµ(t)

(
f 2N(N − 1)

)
(A.1)

from which we derive the normalized signal

Sn(t) = gµ(t) = E

[
1

f 2N(N − 1)

∑
i 6=j

Jij(t)η
µ
i η

µ
j

]

with the proper normalizing constant.

A.2 Noise

Now let us turn attention to noise. Recalling the definition from Section (4.1.2):

N (t) =

√√√√V ar

[∑
i 6=j

Jij(t)ηiηj

]



A.2 Noise 99

The law of total variance states that, if random variables X and Y belong to the

same probability space and the variance of X stays finite, then:

V ar[X] = E

[
V ar[X|Y ]

]
+ V ar

[
E[X|Y ]

]

So, like we just did with the signal, we condition our observable on the number of

active neurons per memory, :

V ar

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
= E

(
V ar

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])
+ V ar

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])
(A.2)

where the first is the mean of the conditional variance:

E

(
V ar

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])
=

= E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa

])
−E
(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

]2)
(A.3)

and the second is the variance of the conditional expectation value:

V ar

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])
=

= E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

]2)
− E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])2

(A.4)
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Let us start with the expression (A.3). The first term is the mean of the conditional

expectation value:

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa

])
=

=
N∑
y=0

E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa = y

]
P
(∑

a

ηµa = y
)

(A.5)

The expected value inside the sum consists of four terms describing all possible

relationships between synapses:

E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa = y

]
=

= P (Jij(t) = 1, Jkl(t) = 1|ηµi η
µ
j η

µ
kη

µ
l = 1)E

[ ∑
i 6=j 6=k 6=l

ηµi η
µ
j η

µ
kη

µ
l

∣∣∑ ηµa = y
]
+

+ P (Jij(t) = 1, Jil(t) = 1|(ηµi )2ηµj η
µ
l = 1)E

[ ∑
i=k 6=j 6=l

(ηµi )2ηµj η
µ
l

∣∣∑ ηµa = y
]
+

+ P (Jij(t) = 1, Jji(t) = 1|(ηµi )2(ηµj )2 = 1)E
[ ∑
i=k 6=j=l

(ηµi )2(ηµj )2
∣∣∑ ηµa = y

]
+

+ P (J2
ij(t) = 1|(ηµi )2(ηµj )2 = 1)E

[ ∑
i=k 6=j=l

(ηµi )2(ηµj )2
∣∣∑ ηµa = y

]
explicitating the expectation value in each term:

=P (Jij(t) = 1, Jkl(t) = 1|ηµi η
µ
j η

µ
kη

µ
l = 1) y(y − 1)(y − 2)(y − 3)+

+ P (Jij(t) = 1, Jil(t) = 1|(ηµi )2ηµj η
µ
l = 1) 4y(y − 1)(y − 2)+

+ P (Jij(t) = 1, Jji(t) = 1|(ηµi )2(ηµj )2 = 1) y(y − 1)+

+ P (J2
ij(t) = 1|(ηµi )2(ηµj )2 = 1) y(y − 1)

where the second contains the correlations given by synapses sharing one neuron,

the third the correlations of synapses sharing both neurons, while the first and the
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fourth are the uncorrelated contributions to the noise.

We may then rewrite (A.5) as

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa

])
=

= P (Jij(t) = 1, Jkl(t) = 1|ηµi η
µ
j η

µ
kη

µ
l = 1)

N∑
y=0

y(y − 1)(y − 2)(y − 3)P
(∑

a

ηµa = y
)
+

+ P (Jij(t) = 1, Jil(t) = 1|(ηµi )2ηµj η
µ
l = 1)

N∑
y=0

4y(y − 1)(y − 2)P
(∑

a

ηµa = y
)
+

+ P (Jij(t) = 1, Jji(t) = 1|(ηµi )2(ηµj )2 = 1)
N∑
y=0

y(y − 1)P
(∑

a

ηµa = y
)
+

+ P (J2
ij(t) = 1, |(ηµi )2(ηµj )2 = 1)

N∑
y=0

y(y − 1)P
(∑

a

ηµa = y
)

(A.6)

and again the sums inside equation (A.6) are a miscellany of moments around zero

of the binomial probability distribution. The two more moments we need are:

M(3) =
N∑
y=0

y3P
( N∑
a=1

ηµa = y
)

= fN(1− 3f + 3fN + 2f 2 − 3f 2N + f 2N2)

M(4) =
N∑
y=0

y4P
( N∑
a=1

ηµa = y
)

= fN(1− 7f + 7fN + 12f 2 − 18f 2N + 6f 2N2+

− 6f 3 + 11f 3N − 6f 3N2 + f 3N3)

Inserting them back into (A.6) we get:

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa

])
=
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= P (Jij(t) = 1, Jkl(t) = 1|ηµi η
µ
j η

µ
kη

µ
l = 1)(M(4) − 6M(3) + 11M(2) − 6M(1))+

+ P (Jij(t) = 1, Jil(t) = 1|(ηµi )2ηµj η
µ
l = 1)(4M(3) − 12M(2) + 8M(1))+

+ P (Jij(t) = 1, Jji(t) = 1|(ηµi )2(ηµj )2 = 1)(M(2) −M(1))+

+ P (J2
ij(t) = 1|(ηµi )2 = 1, (ηµj )2 = 1)(M(2) −M(1)) (A.7)

Now we need to find the conditional probabilities of finding a pair of synapses in

the potentiated state at time t given the presentation of memory pattern µ at t = 0.

Starting from the uncorrelated terms in the previous equation, we immediately see

that the probability in the first term is equivalent to the square of the conditional

probability of finding one enhanced synapse, since the activities of synapses con-

necting two separate pairs of neurons are uncorrelated:

P (Jij(t) = 1, Jkl(t) = 1|ηµi η
µ
j η

µ
kη

µ
l = 1) =

(
P (Jij(t) = 1|ηµi η

µ
j = 1)

)2
= (gµ(t))2

To derive the distribution in the fourth term we only need to note that in our

framework (ηµi )2 = ηµi and J2
ij = Jij, hence:

P (J2
ij(t) = 1|(ηµi )2(ηµj )2 = 1) = P (Jij(t) = 1|ηµi η

µ
j = 1) = gµ(t)

The remaining terms account for synapses sharing one or two input neurons. The

corresponding markov process has four states determined by the four possible com-

bination of synaptic states 0 and 1, giving rise to a 4x4 transition probabilities

matrix. We have obtained the two matrices, one for synapses receiving input from

one common neuron, and the other for synapses sharing both neurons although with



A.2 Noise 103

opposite input-output roles. They have the form:

M(Jij(t+ 1), Jil(t+ 1)|Jij(t), Jil(t), ηµi η
µ
j η

µ
l = 1) =

=



1− 2m10
11 −m00

11 m10
11 m01

11 m00
11

m11
10 1−m11

10 −m01
10 −m00

10 m01
10 m00

10

m11
01 m10

01 1−m11
01 −m10

01 −m00
01 m00

01

m11
00 m10

00 m01
00 1− 2m10

00 −m11
00


From now on we omit from notation that the matrices regard only synapses connect-

ing neurons that were active upon the presentation of the tracked memory µ. When

input is a sequence of random and uncorrelated memories, transition probabilities

mJt+1Jt+1

JtJt for synapses having one common neuron are:

m10
11 = m01

11 = P (Jij(t+ 1) = 1, Jil(t+ 1) = 0|Jij(t) = 1, Jil(t) = 1, ηµi η
µ
j η

µ
l = 1) =

= q−f(1− f)(2− q−)

m00
11 = q2

−f(1− f)

m11
10 = m11

01 = q+f
2(1− q−(1− f))

m01
10 = m10

01 = q+q−f
2(1− f)

m00
10 = m00

01 = q−f(1− f)(2− q+f)

m11
00 = q2

+f
3

m10
00 = m01

00 = q+f
2(1− q+f)

A 4x4 matrix has four eigenvalues λα (α = 1, ..., 4). If the process is ergodic and

irreducible, as in our case, the eigenvalues can be arranged according to magnitude:

λ1 = 1 > λ2 > λ3 > λ4. The leading eigenvalue λ1 is associated to the asymptotic
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distribution of synaptic efficacies, in fact it must hold:

π1M = λ1π1

where, since λ1 = 1, the left eigenvector π1 is the equilibrium distribution of synaptic

efficacies, undergoing the stochastic process defined by transition probability matrix

M . The probability of finding two potentiated synapses sharing one neuron when

t→∞ and conditioned on µ-th memory is then:

γµ∞ ≡ P (Jij = 1, Jil = 1|ηµi η
µ
j η

µ
l = 1) =

=
q2

+f
2(2− q+f)

(2q−(1− f) + q+f)(q+f(2− q+f)− q2
−(1− f) + 2q−(1− f)(2− q+f))

Repeating the same argument for synapses sharing two neurons we find:

m10
11 = m01

11 = 2f(1− f)q−(1− q−)

m00
11 = 2q2

−f(1− f)

m11
10 = m11

01 = q+f
2

m01
10 = m10

01 = 0

m00
10 = m00

01 = 2q−f(1− f);

m11
00 = q2

+f
2

m10
00 = m01

00 = q+f
2(1− q+)

σµ∞ ≡ P (Jij = 1, Jji = 1|ηµi η
µ
j = 1) =

=
fq2

+((1− f)2q− + f(2− q−))

((2(1− f)q− + fq+)(2(1− f)(2− q−)q− + 2fq+ − fq2
+)
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Inserting these results back into (A.7):

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∑
k 6=l

Jkl(t)η
µ
kη

µ
l

∣∣∣∣∑
a

ηµa

])
=

= (gµ(t))2(M(4) − 6M(3) + 11M(2) − 6M(1)) + γµ(t)(4M(3) − 12M(2) + 8M(1))+

+ σµ(t)(M(2) −M(1)) + gµ(t)(M(2) −M(1))

All correlations are embodied in the latter expression, the remaining quantities in

eq. (A.2) are therefore easier to be calculated. Skipping superfluous details, the

final results are:

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

]2)
= (gµ(t)2)(M(4) +M(2) − 2M(3))

E

(
E

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

∣∣∣∣∑
a

ηµa

])2

= (gµ(t)2)(M(2) −M(1))2

We can now write the total variance as:

V ar

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
= (gµ(t))2(M(4) − 6M(3) + 11M(2) − 6M(1))+

+ γµ(t)(4M(3) − 12M(2) + 8M(1)) + σµ(t)(M(2) −M(1))+

+ gµ(t)(M(2) −M(1))− (gµ(t)2)(M(2) −M(1))2

keeping only the leading coefficients in the limit of high sparseness and large network

(f → 0, N →∞, fN →∞) the expression for the noise becomes:

N (t) =

√√√√V ar

[∑
i 6=j

Jij(t)η
µ
i η

µ
j

]
= 2(fN)3/2

(
γµ(t)− fgµ(t)2

)1/2

it can be easily seen from (A.1) that signal in that limit has the form:
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S(t) = (fN)2gµ(t)

the signal to noise ratio grows with the square root of the network size and of the

coding level:

S
N

=
√
fN

gµ(t)

2
√
γµ(t)− fgµ(t)2

it is worthwhile to remark that the leading term in the noise contains correlations

through the probability distribution γµ, that therefore influence the capacity of

retrieval, but for networks large enough the signal to noise ratio is guaranteed to be

high enough, because all the dependance on N is contained in the coefficent
√
fN .

A.3 SNR expansion in a balanced network

Right after the presentation (at t = 0) of the tracked memory the conditional distri-

bution γµ(t) is given by the probability that a pair of depressed correlated synapses

underwent potentiation plus the probability that two correlated synapses with oppo-

site efficacies end up being both potentiated, and obviously the fraction of correlated

synapses that were already potentiated before the presentation of memory µ:

γµ(0) = P (Jij = 1, Jil = 1|ηµi η
µ
j η

µ
l = 1) + 2P (Jij = 0, Jil = 1|ηµi η

µ
j η

µ
l = 1) q +

+ P (Jij = 0, Jil = 0|ηµi η
µ
j η

µ
l = 1) q2 = γµ11 + 2 γµ10 q + γµ00 q

2 (A.8)

where γµ11, γµ10 and γµ00 are found by solving the eigenvalue problem for the 4x4 tran-

sition matrix M(Jij(t + 1), Jil(t + 1)|Jij(t), Jil(t), ηµi = 1, ηµj = 1, ηµl = 1). We have

calculated these probabilities when memory patterns are uncorrelated. Skipping
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unimportant details, we give the result:

γµ11 =
q2

+f
2(2− q+f)(

2q−(1− f) + q+f
)(
q+f(2− q+f)− q2

−(1− f) + 2q−(1− f)(2− q+f)
)

γµ10 =
q+q−f(1− f)(4− 2fq+ − q−)(

2q−(1− f) + q+f
)(
q+f(2− q+f)− q2

−(1− f) + 2q−(1− f)(2− q+f)
)

γµ00 =
(1− f)q2

−(2(1− f)(4− q−) + f(4f − 3)q+)(
2q−(1− f) + q+f

)(
q+f(2− q+f)− q2

−(1− f) + 2q−(1− f)(2− q+f)
)

We now adopt the prescription

q+ = q q− =
qf

2(1− f)
(A.9)

in order to balance the average number of potentiating and depressing events in

the synaptic matrix. Achieved the correct simmetry, we expand the conditional

probabilities γµ11, γµ10 and γµ00 to the first order in f :

γµ11 = γµ00 =
1

4
+
qf

64
γµ10 =

1

4
−
qf

64

Using this and the fact that gµ∞ =
1

2
we can rewrite the initial SNR as

S0

N0

=
√
fN

1

2
q

2

√
1

4
(1 + q)2 +

qf

64
(1− q)2 − f

(1

2
(1 + q)

)2



Appendix B

Many subclasses limit

B.1 Approximated expressions for the overlaps

In Section 4.2.3 we have delineated the many patterns approximation in the three

generations hierarchy. The effort has been motivated by the need for decreasing the

number of different submatrices making up the synaptic matrix. This reduces the

amount of time needed to calculate the expressions. The grandfather overlap is, we

now give the expressions for the other generations.

The father’s sequence averaged overlap is

gµν∞ =

p1−1∑
Π=0

p1−1−Π∑
∆=0

ψ+(Π,∆)

[
p2−1∑
π1=0

p2−1−π∑
δ1=0

φ1+(π1, δ1)×

×
(

β1+(π1, δ1) + B(Π,∆)

β1+(π1, δ1) + B(Π,∆) + α1+(π1, δ1) + A(Π,∆)

)
+

108
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+

p2−1∑
π2=0

p2−1−π∑
δ2=0

φ2+(π2, δ2)

(
β1+(π2, δ2) + B(Π,∆)

β1+(π2, δ2) + B(Π,∆) + α1+(π2, δ2) + A(Π,∆)

)]
+

+

p2−1∑
π3=0

p2−1−π∑
δ3=0

φ3+(π3, δ3)

(
β1+(π3, δ3) + B(Π,∆)

β1+(π3, δ3) + B(Π,∆) + α1+(π3, δ3) + A(Π,∆)

)]
(11)

The memory trace of a generic son ηµνσ is

gµνσ∞ =

p1−1∑
Π=0

p1−1−Π∑
∆=0

ψ+(Π,∆)×

×

[
U2

p2−1∑
π1=0

p2−1−π∑
δ1=0

φ1(π1, δ1)

(
r2 β1+(π1, δ1) + B(Π,∆)

β1+(π1, δ1) + B(Π,∆) + α1+(π1, δ1) + A(Π,∆)
+

+
2f(1− f)r(1− s)

f 2

β2+(π1, δ1) + B(Π,∆)

β2+(π1, δ1) + B(Π,∆) + α2+(π1, δ1) + A(Π,∆)
+

+
(1− f)2(1− s)2

f 2

β3+(π1, δ1) + B(Π,∆)

β3+(π1, δ1) + B(Π,∆) + α3+(π1, δ1) + A(Π,∆)

)
+

+
2f(1− f)U(1− V )

f 2

p2−1∑
π2=0

p2−1−π∑
δ2=0

φ2(π2, δ2)×

×
(
r2 β1+(π2, δ2) + B(Π,∆)

β1+(π2, δ2) + B(Π,∆) + α1+(π2, δ2) + A(Π,∆)
+

+
2f(1− f)r(1− s)

f 2

β2+(π2, δ2) + B(Π,∆)

β2+(π2, δ2) + B(Π,∆) + α2+(π2, δ2) + A(Π,∆)
+

+
(1− f)2(1− s)2

f 2

β3+(π2, δ2) + B(Π,∆)

β3+(π2, δ2) + B(Π,∆) + α3+(π2, δ2) + A(Π,∆)

)
+

+
(1− f)2(1− V )2

f 2

p2−1∑
π3=0

p2−1−π∑
δ3=0

φ3(π3, δ3)×

×
(
r2 β1+(π3, δ3) + B(Π,∆)

β1+(π3, δ3) + B(Π,∆) + α1+(π3, δ3) + A(Π,∆)
+

+
2f(1− f)r(1− s)

f 2

β2+(π3, δ3) + B(Π,∆)

β2+(π3, δ3) + B(Π,∆) + α2+(π3, δ3) + A(Π,∆)
+

+
(1− f)2(1− s)2

f 2

β3+(π3, δ3) + B(Π,∆)

β3+(π3, δ3) + B(Π,∆) + α3+(π3, δ3) + A(Π,∆)

)]

where:
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β1+(π, δ) = q+

(
r2(π + 1) + r(1− s)δ + (1− s)2(p2 − 1− π − δ)

p2

)
α1+(π, δ) = q−

(
2r(1− r)(π + 1) + (rs+ (1− s)(1− r))δ + 2s(1− s)(p2 − 1− π − δ)

p2

)
β2+(π, δ) = q+

(
r2π + r(1− s)(δ + 1) + (1− s)2(p2 − 1− π − δ)

p2

)
α2+(π, δ) = q−

(
2r(1− r)π + (rs+ (1− s)(1− r))(δ + 1) + 2s(1− s)(p2 − 1− π − δ)

p2

)
β3+(π, δ) = q+

(
r2π + r(1− s)δ + (1− s)2(p2 − π − δ)

p2

)
α3+(π, δ) = q−

(
2r(1− r)π + (rs+ (1− s)(1− r))δ + 2s(1− s)(p2 − π − δ)

p2

)

are the sequence averaged potentiation and depression levels and

φ1+(π, δ) =
(p2 − 1)!

π!δ!(p2 − 1− π − δ)!
[u2]π [2u(1− u)]δ [(1− u)2](p2−1−π−δ)

φ2+(π, δ) =
(p2 − 1)!

π!δ!(p2 − 1− π − δ)!
[u(1− v)]π [uv + (1− u)(1− v)]δ [(1− v)2](p2−1−π−δ)

φ3+(π, δ) =
(p2 − 1)!

π!δ!(p2 − 1− π − δ)!
[(1− v)2]π [2v(1− v)]δ [(v2](p2−1−π−δ)

the probability distributions.
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